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INTRODUC TION

This second volume of the final report contains seven technical

memoranda in their original form as generated during the course of the

contract.

In Memoranda 1 and 2, the problem of minimizing tracking errors of

a large radio antenna for tracking space vehicle motion is formulated

as a combined optimum estimation and control problem. The purpose of

Lhis work is to illustrate the applicability of combined optimization

theory to high-precision pointing problems.

In Memoranda 3 and 4, reliability is considered from a systems point

of _iew. A mathematical formulation for maximizing the service provided

by a system comprising unreliable components is developed and shown to

be ._olvable by standard optimization techniques.

In Memorandum 5, a simplified design technique for model-referenced

adaptive systems, which are a subclass of performance feedback adaptive

SySteIllS, iS discussed. In Memorandum 6, analysis-synthesis adaptive

systems are treated, and the adaptive control problem is formulated in

terms of combined estimation and control theory combined optimization

theory ') .

In Memorandum 7, the problem of high-precision tracking of space

vehicles is solved by application of the theory of optimum estimation

and control. A computer program to implement the linearized estimator

and controller has been developed and tested. This program is intended

as a study tool to determine the relation between tracking performance

and variou_,_ design parameters, such as receiver noise, readout noise,

trajectory model inaccuracies, wind disturbance, mechanical resonance, etc.

ix





MEMORANDUM 1

:\i-'PLICATION OF ADAPTIVE FILTERING TO

_ATELLITE TRACKING AND ATTITUDE CONTROL





MEMORANDUM 1

APPLICATION OF ADAPTIVE FILTERING TO

SATELLITE TRACKING AND ATTITUDE CONTROL

I INTRODUCTION

The purpose of this memorandum is to illustrate the applicability

of modern _daptive filtering techniques to two specific problems: i) the

tracking of an earth satellite from an earth-bound tracking site, and

2) the attitude control of a satellite or space vehicle via information

obtained from an on-board horizon sensor or star tracker. It will be

shown that these two problems, although they appear quite different, can

be treated by exactly the same methods, yielding similar system config-

urations. These configurations, while representing the application of

advanced system theory to important present-day problems, also ]]ave the

property that they can be implemented with presently available systems

hardware. Thus closed loop angle tracking of deep space vehicles, which

is presently impossible due to the very low signal to noise ratio exper-

ienced, would be brought within the realm of practicability.

It is shown in Sec. III that the system equations for the two

problems of interest are either basically linear or can be appropriately

linearized. As a result of this fact, these problems may be considered

as a special case of the general problem of combined optimal estimation

and control. The unique feature of this special case is that the func-

tions of estimation and control seperate; this fact being reflected in

the system configurations shown in Sec. 111.

The use of the term "adaptive" in describing the techniques dis-

cussed in this memorandum is based on two properties of these techniques.

The first is that the filters vary their own dynamic behavior as a func-

tion of the existing noise environment (open-loop adaptation). Second-

ly, they can be arranged to estimate not only the system state but also

the values of system parameters. Hence these filters may be considered

as part of an analysis-synthesis adaptive system as well.

The novel feature of the systems discussed for the problems of
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satellite tracking and attitude control is the use of a state estima-

ting filter in a system which would more commonly be designed as a con-

ventional feedback servo system. The advantages of this approach, which

are discussed in detail in Sec. IV, include: improved accuracy due to

enhanced immunity to noise and load disturbances, ability to operate in

signal to noise conditions where conventional designs fail completely,

improved reliability, and optimum utilization of a priori information.

Several remaining research questions, both applied and theoreti-

cal, are discussed in Sec. V.

II THE SATELLITE TRACKING AND ATTITUDE CONTROL PROBLEMS

In approaching the satellite tracking and attitude control prob-

lems, four points must be considered: i) the input signal generating

mechanism, 2) the response mechanism, 3) the data collection system, and

4) the system performance criterion and constraints that limit the per-

formance achievable. In what follows, each of these points is discussed

in the context of satellite tracking and attitude control, however the

development is of a sufficiently general nature that the applicability

of the method to a wide variety of dynamic systems will be clear.

A. Input Signal Generating Mechanism

Since both problems to be considered involve an earth satellite,

it is convenient to employ a nonrotating rectangular earth centered

coordinate system. It will be assumed (although this assumption is not

necessary) that the earth satellite problem is a two-body problem and

that the motion of the earth within the solar system may be ignored.

Furthermore, the earth will be assumed homogeneous, spherical, and

centered at the origin of the coordinate system.

The input signal generating mechanism for the satellite angle track-

ing problem is just the relative motion of the satellite and the tracking

For a space vehicle this latter assumption is not valid and a space fixed

coordinate system must be used. This, however, does not invalidate the

method.

An analogous development exists for dopplvr and other tracking techniques.
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site. This motion arises as the result of two dynamical systems, the

first governing the motion of the satellite around the earth and the

second the rotation of the earth on its axis. For the three position

components and three velocity components of the satellite and tracking

site given respectively by x 1 - x 6 and Yl - Y6 ' these dynamical sys-

tems may be represented by vector differential equations of the form

-- fl[_, g(x), w__(t)] (i)

y"- f2(y)

where fl and f2 are, in general, nonlinear functions of their

arguments. The term g(_) is included to account for the inhomo-

geneous gravitational field of the earth, and w(t) represents the

1
unpredictable drag effects experienced by the satellite.

Since in the tracking context it is the motion of the satellite

relative to the tracking site that is of interest, the vector

zBx -y

representing the line joining the satellite and the tracking site will

he considered. Furthermore, by a straightforward change of variables,

z may be expressed in the so-called "radar parameters" for the particu-

lar tracking site. These parameters are the azimuth 0 , elevation

and range p , and their respective time derivatives. Together, these

six parameters comprise the components of the state vector s of the

satellite expressed in a polar coordinate system centered at the track-

ing site. The input signal generating mechanism for the satellite track-

ing case, which produces the time profiles O(t), _(t) and p(t), may

therefore be expressed as

B f3 [_' g(x), _(t)] (3)
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where the form of f3 is derived from fl and f2 together with the

change of variables employed.

For the attitude control case two variants, which require somewhat

different approaches, are considered: the use of a star tracker and the

use of horizon sensors. It should be pointed out that although complete

three axis control can be achieved with the use of a single star tracker,

a single horizon sensor can yield control in only one axis. At most,

the pitch and roll axes of an earth satellite can be controlled by the

use of two horizon sensors, the yew axis must be controlled by other

means.

In the case of a star tracker, the quantities of interest are the

angles between the line connecting the star and the satellite and each

of two reference lines on the satellite. If the satellite is to be

stabilized with respect to space, then it is required that these angles

be kept constant. However, if the satellite is earth oriented, the de-

sired values of these angles varies as a function of the satellite state

x. Since this requires an on-board knowledge of the satellite state at

all times, the use of a star tracker for earth orientation is probably

not as attractive as other techniques.

The input signal generating mechanis_n for a star tracking attitude

control system is partict_larly simple. The angular orientation of the

reference line to the star remains approximately constant with respect

to a non-rotating earth centered coordinate system for any vehicle

trajectory within the solar system. This is true since the distance to

even the nearest star is much larger than any dimension of the solar

system. For example, taking the nearest star to be 63,000 a.u. distant,

and the diameter of the earth's orbit about the sun to be 2 a.u., the

maximum variation in the orientation of the reference line for any

position within the earth's orbit is approximately 31.8 microradians -

a negligible quantity. As a result, if y is taken in this case to rep-

resent the angular orientation of the reference line in space, the input

signal generating mechanism may be characterized by

= 0 (4)
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A horizon sensing system should be considered only in the context

of an earth oriented satellite. The use of a horizon sensor to accom-

plish any other orientation leads to undue difficulties. Subject to

this restriction, the input signal to a horizon sensing system is also

approximately a constant if a spherical earth and circular orbit are

assumed. (Relaxing these assumptions does not lead to any increase in

complexity as will be shownin Sec. III). This maybe illustrated simply

by meansof Fig. 1. It maybe seen from simple geometry that for any

given orbit, the angle _ between the local vertical and the horizon, is

independent of the satellite's position along the orbit. That is

is independent of the value _. Henceif y is taken to represent the

inp_tt signals in the pitch and roll coordinates, the input signal gen-

erating mechanism for a horizon sensing system may likewise be charac-

terized by _ = 0.

_=_____ ,,,_SATELLITE ORBIT

lil/ EART. \\

FIG. I SYSTEM GEOMETRY

B. Response Mechanism

The response mechanism for the satellite tracking case consists

of the tracking antenna and its associated drive system. For the most

common tracking configuration, the azimuth-elevation mount, this drive

system is divided into two independent channels, one for azimuth and one

for elevation. These channels are usually of the velocity servo type in
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that a constant input signal gives rise to a steady state output velocity.
The drive systems are for the most part linear, with somepossible non-

linear coupling arising from the change in effective momentof inertia as

the antenna changesposition. The predominant nonlinearity in a tracking

antenna system is a strong effective saturation on the drive system input

signal. This arises from power limitations, and is necessary to prevent

high accelerations from causing structural damageto the antenna. Letting
/ *

be the state vector of the tracking antennas, in the same radar para-

meter coordinate system described above, the behavior of the tracking

antenna drive system may be described by:

_l _ A s' + B u (6)

where A is the system matrix that describes the system dynamics, B is

the distribution matrix indicating the manner in which the drive system

input u is applied. A restriction of the form

a. _ u. _ b. (7)
1 1 1

must be placed on the components of

2
constraints.

u to account for the saturation

The satellite itself, together with its torquedng system, comprises

the response mechanism in the attitude control case. The system dynamics

take on a particularly simple form in this instance since the satellite

may be represented as a pure inertia in free space. Two methods of

torqueing a satellite commonly employed in stabilization systems of this

type are the use of reaction jets and the use of reaction flywheels.

Reaction jets have the property that the torque they produce is quantized

to specific values, usually two, one positive and one negative. As a

result, systems employing reaction jet torquers behave as contactor con-

trol systems. However, if techniques such as pulse duration modulation

are employed, a reaction jet system can be considered linear for analysis

purposes. Reaction flywheel torquers, on the other hand, are continuous

and in general linear, producing an output torque proportional to the

Note that _t does not contain components relating to range, as does s.

1-6



input signal. For either torquing system there is a saturation con-

straint on the maximum torque that can be produced. In addition, the

reaction jet system has a limitation on the total impulse that can be

generated set by the amount of fuel on board. A similar limitation for

the reaction flywheel system can be avoided if power is obtained, for

example, from solar cells.

Since there is no coupling between the axes, the equations for the

satellite motion can be partitioned and only one axis need be considered.

Taking x" to be the state vector whose components are, for example,

pitch angle and pitch angle rate, the satellite response mechanism can

be described by

x" = A x + B u (7)

where in this case the matrix A takes on a particularly simple form

In those instances where a star tracker is employed to produce

other than space oriented attitude control, there will be a second

response mechanism within the satellite to position the star tracker

axis relative to the satellite. This system, however, may be described

and analyzed in a manner completely analogous to that of the satellite

tracking system described above.

C. Data Collection Systems

The data collection system for a satellite tracking station is made

up of a conical scan or monopulse receiving antenna structure and the

associated electronic demodulating equipment. The output information

obtained from this system is two signals which are proportional to the

azimuth and elevation components of the antenna pointing error. This

pointing error is defined as the angle between the boresight of the an-

tenna and the line from the tracking site to the satellite. This data

collection system is non-dynamic (i.e.: it operates much faster than

anything else in the tracking system) and may be closely approximated

by a linear relationship for small values of the error. Hence the data

collection system may be represented by
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- _ k (_ - _') (9)¢0 ko(O 0 ') ¢

where O and _ are elements of _ and O t and t are elements of

s t Errors in the form of noise are introduced into these measurements

as the result of atomospheric distortion of the radio line o£ sight,
3

r.f. sky noise, and receiver front end noise.

The data collection systems on-board a satellite for attitude

control produce essentially the same information as does that for

satellite tracking. A star tracker produces two signals proportional

to the components of the pointing error between the axis of the tracker

telescope and the line to the star. A horizon sensor produces an output

proportional to the angle between its axis and a line from the satellite

to the horizon. The principle source of error in a star tracker is

distraction by light from stars near the one being tracked, or by illumi-

nated space dust coming into the field of view. Horizon sensors are

subject to errors arising from atmospheric refraction and the presence

in the atmosphere of clouds, dust, and other effects which tend to

obscure the horizon. Both systems are subject to noise generated

within the electronic signal processing equipment, but this tends to

be of lesser significance.

D. Performance Criterion

In both the satellite tracking and satellite attitude con-

trol problems, the objective is to maintain the system error as small

as possible. In this sense the performance criterion for these systems

is instantaneous in that the performance at the present moment is given

by the present value of the error. The strict application of such an

instantaneous performance criterion, however, can lead to undesirable

overall behavior since attempts to immediately null the present error

can produce large subsequent overshoots. A more realistic performance

criterion is some average measure of system error such as the mean

square error. Such a measure provides a stationary criterion that is,

in general, dependent only on the configuration of the system and not

on the nature of the system signals at any given instant. Such an av-

erage measure must be tempered by the constraint that the instantaneous

error not be allowed to become so large that input signal is lost due

to passing outside the field of view.
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III SYSTEM CONFIGURATION

In the previous section, the basic factors involved in the problems

of satellite tracking and attitude control have been discussed. In the

present section, system configurations are developed, employing modern

filtering, which are capable of alleviating some of the shortcomings

inherent in the present methods used to solve these problems.

A. Satellite Tracking

The configuration of a satellite tracking system employing modern

filtering is shown in Fig. 2.

{ ACQUISITIONI NFORMATION

SATELLITE _,
STATE CONTROLLER

ESTI MATOR _._ ANTENNA i =' (
DRIVE - ;

SYSTEM
ANTENNA

(8 AND (@ RECEIVER
AND

DEMODULATOR I ISIGNAL
GENERATING
MECHANISM

FIG. 2 SATELLITE TRACKING

The operation of this system is as follows: The satellite state esti-

mator (for example a Kalman filter) generates an optimum estimate

of the state of the satellite to be tracked.* This estimate is based

on precalculated acquisition information as well as any radar return

data collected. The estimation is done by making use of the model of

the signal generating mechanism as given by Eq. 3 and a priori informa-

tion regarding the parameters to be used in the system model. This

estimate is adjusted by the controller to account for such antenna

errors as sag, known warpage, encoder errors, etc. In addition, adjust-

ments may be made based on the velocity components of _ which will

effectively eliminate the dynamic following error of the antenna drive

The range components of _ are not used in the operation of the tracking

system.
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system. This latter compensation is similar to the lead employed in

shooting at a moving target. The resulting adjusted estimate constitutes

a position input signal to the antenna drive system. By feeding back the

antenna position around the velocity servo, thus converting it to a posi-

tion servo, maximum performance of the antenna positioning system can be

achieved without affecting the properties of the tracking loop. Hence

the position loop can be made very "stiff" to reduce the effects of dis-

4
turbances such as wind gusts. This contrasts with normal tracking

practice where the tracking error signals ¢0 and _ are used directly as

rate input signals to the respective antenna drive system channels. Hence,

if low bandwidth filters are required to combat a low signal-to-noise

ratio, this low bandwidth is impressed on the antenna drive system thus

deteriorating its immunity to load disturbances.

Tracking error data, obtained via the data collection system des-

cribed earlier, is fed back to the state estimator, together with the

measured antenna state s t These two pieces of information combine to

provide measurements of actual satellite position. After these measure-

ments are corrected to compensate for known system errors (in a manner

exactly analogous to that in which _ is adjusted), they are used to

improve the accuracy of the estimation. The manner in which this im-

provement is accomplished is discussed in Sec. III-C.

In addition to the generation of optimum estimates of the satellite

state _ , several other properties of the estimator can be exploited to

enhance system performance. For example, the measured data can be used

to improve the parameter values used in the model, to the end that the

model more faithfully represents the actual input signal generating

mechanism. Another example is the fact that in addition to the estimate

of the satellite state, the estimator also provides the covariance asso-

ciated with this estimate. Such information is useful in assessing system

operation and improving system performance. A third example applies in

those cases where maneuvering commands are sent to the space vehicle being

tracked. These same commands can be applied to the model contained

within the estimator with the result that the estimated state reflects

anticipation of the space vehicle maneuver. This eliminates the errors

caused by waiting to sense the vehicle maneuver via the feedback data.
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B. Satellite Attitude Control

For the case of satellite attitude control the configuration shown

in Fig. 2 must be modified to that shown in Fig. 3.

_ ACQUISITIONI N FORMATION

SATELLITE ._ _._
STATE CONTROL LE R

ESTI MATOR

T

11./

SATELLITE

t , .i , 1HORIZON _ _ GENERATING
SENSOR _ X'nom MECHANISM

FIG. 3 ALTITUDE CONTROL

In this figure the vector x" represents the state of the satellite

(3 angular positions and 3 angular rates) and x" represents the desired
--nom

or nominal value of this state. The difference between these two vectors,

as measured by the star tracker (a horizon sensor can measure the difference

in only one angle and one angle rate) is used as the measured input data

to the satellite state estimator. When this difference vector Ax"

is added to the known angular orientation of the star tracker axis within

the satellite, the result is a measured value for x" Based on these

measurements, a model of the satellite dynamics as given in Eqs. 7 and 8,

and initial acquisition information obtained during the lock-on phase,

the satellite state estimator generates an optimum estimate of the

satellite state xf This is compared in the controller with the nominal

state, and torquer control inputs generated to eliminate any deviation

from the prescribed attitude.

The optimal controller must be computational in nature since it

must calculate, for a pure inertia plant, that time profile of torque

about each axis that will just reduce the indicated state error to zero.

This is necessary here, unlike the tracking case, since no direct accurate

feedback of the satellite state x is available. (Accurate information

about x" could be obtained from, for example a gyro stabilized platform,
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but this would involve considerable cost and increase the system complex-

ity and, in large part, would obviate the need for the star or horizon

sensing system.) Hence the control of the satellite position cannot be

accomplished by a straightforward position loop as was previously pos-

sible.

In Sec. II several assumptions were made which resulted in the

input signal x" being a constant. If these assumptions are relaxed
--nom

to take into consideration a non-spherical, non-homogeneous earth and a

non-circular orbit, then it is clear that x" will no longer be a
-- nom

constant but will depend on the satellite's position x in its orbit. It

is evident that this does not add any complexity to the attitude control

system per se, but considerable effort would be involved in obtaining

the x" signal.
-- nora

The observations made for the tracking case regarding the estima-

tor's capability for improving the estimate of the state as well as the

model also apply to this case.

C. Optimum Estimation and the Ealman-Bucy Estimator

The general problem of optimum estimation is formulated with

reference to Fig, 4 and in discrete time as follows:

v_k

... DYNAMIC t X-k I 1 !WPROCESS _v[ h

FIG. 4 OPTIMUM ESTIMATION

_k: state of process at k th sampling time

w : random perturbation at time k
--k

_k: measurement noise at time k

_Zk: measurement at time k
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Given:

(i) The known difference equation

_k+l = f(_k' _k' _k' k) (i0)

(2) The initial probability density p (xo)

(3) The statistics of _w' P(Wi ) , i = 0,i .... ,k

(4) The known relation

(ll)
_k = h(_k' fk )

(5) The statistics of _v' p(_i ) , i = 0,I .... ,k

(6) The measurements z , i = 0,1,...,k
--i

^ *

Find: The most likely estimate _k/k of the system state _k where most

likely is defined as that estimate for which

by Kalman and Bucy,

the form

/

P(Xk' _-0'" " "'Zk)

is maximized.

A completely rigorous solution to this problem has been obtained

4 for the special case where Eqs. i0 and ii take

Xk+ 1 = _(k) x k + F(k) w k (12)

z k = H(k) --kX + v k (13)

respectively, and in addition the statistics P(Xo), p(__wi) , P(Vi) are

uncorrelated Gaussian probability density functions. For this case

optimum estamator is given by the equation

^ : H T R -1 [z k H _ _k-l,"k-I ] (14)Xk/k _ Xk-i k-i + Pk k

where R is the covarianee matrix of the noise process v. The matrix

Pk/k is defined by

Pk k = <(--Xk k - Xk) (--XkJk - xk)r>

^

and is the covariance of the estimate Xk/k.

(15)

The variations of Pk_ k with

^

The notation _k/k denotes the estimate of the value of the state vector

_k' the estimate being made at time k.
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k is given by the equation
-i

_T + F Q FT + H T R -I Hj (16)
Pk k = [_Pk-i k-1

where Q is the covariance matrix of the disturbance process w. A

possible implementation of the Kalman -Bucy estimator is given in Fig.

5.

) +( xN,,/k,,

_- [ - _. : DELAY

/

_'k,I

FIG. 5 KALMAN-BUCY ESTIMATOR

^

_klk

T R-I
K = Pk k H

The development given above is valid only for linear systems in

which all stochastic variables are generated by uncorrelated (white)

Gaussian processes. The requirement that the noise processes be un-

correlated can be relaxed to permit correlated Gaussian noise, and still

retain a rigorous result, by adding "coloring" prefilters to the plant

which appropriately shape the spectrum of an input white noise. The

problem is thus returned to the original formulation, at the cost of

some increase in the complexity of the plant model.

Several suggestions have been made for methods of applying the

estimator configuration given by Eqs. 14 and l(i, to the case where the

plant and/or the observation system are non-linear. These techniques

_mploy linearization of the plant and/or observation system about the

present state values or about a nominal set of values (nominal state
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trajectory). The problem is then treated as being linear in the small.

A theoretical development for this case has been given based on the

assumption that the statistics of all signals within the system may be

adequately approximated by Gaussian multivariate density functions. 6_7

Furthermore, the concept of local linearization has been tested

by at least two simulations, the results indicating satisfactory perform-

7,8
ance.

The linear, or linearized, estimation problem described here,

together with the control of an essentially linear plant, constitute a

special case of the general problem of combined optimal estimation and

9
control. For this case, and with the further assumption that all

probability densities may be approximated by Gaussian density functions,

i0
it has been shown that the functions of estimation and control

separate and may be performed, in cascade. (That this is not generally

true is discussed in Sec. V). As a result, the configuration_ shown in

Figs. 2 and 3, where the estimator is followed by a controller, are truly

optimal for the linear, or linearized, Gaussian case

In the event that the values of one or more of the elements in

the matrices _ or H of eqs. 12 and 13 are imperfectly known, these elements

can be added as additional state variables to form an augmented state

vector. In the process of estimating the state vector, estimates of

the values of these parameters will be obtained in addition to an esti-

mate of the plant state. Augmenting the state vector, however, immediately

leads to a nonlinear plant equation, and the techniques discussed above

Ii
for treating nonlinear plants must be employed.

Several other rigorous results have been obtained to the general

12
problem of estimation. The formulation due to Cox arrives at essen-

tially the same results described here, but via the technique of dynamic

programming. A somewhat more general class of problems may be handled by

this method, however a search over a set of values for the minimum is

entailed at each iteration. The recursive application of Bayes Rule for

13
estimation as suggested by Lee _d Meler , Is completely general

and capable of handling any systems and statistical descriptions. However,
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they lead to infinite dimensional expressions, thus rendering the method,

in a strict sense, uncomputable. The need for suitable approximations to

reduce this method to practice is discussed in Sec. V.

IV POTENTIALADVANTAGES

In this section several potential advantages to be derived from

the use of modernadaptive filtering techniques in the context of satel-

lite tracking and attitude control are discussed.

A primary advantage is the enhancedaccuracy that can be achieved.

This comesabout principally as the result of two properties that are in-

herent in a system employing an optimumestimator and controller. These

properties are: immunity to observation noise and immunity to load dis-

turbances. Immunity to observation noise is the consequenceof the fact

that the estimator produces a least variance estimate of the state from

the noisy data received. Hence it is capable of better noise rejection

than any other filtering technique. The immunity to load disturbances

results from the separation of the functions of filtering and plant output

control by an inner feedback loop. (This does not apply in somecases

of satellite attitude control.) The system for controlling the plant

output can be optimized to reject load disturbances, without degrading

the filtering operation of the estimator. Conversely the estimator can

optimally reject input noise without degrading the plant performance.

The use of a model of the system dynamics in the structure of the
estimator provides the unique capability of continuing to produce state
estimates in the absenceof feedback data. Whereasin a conventional

system design the loss of feedback information constitutes open loop

operation, and almost certain unacceptable system behavior_ this is not
the case for the Kalmanestimators described. Loss of feedback data to

a modeling estimator simply implies that further estimates will be made

on the basis of the system model and data up to that point, with no

further corrections being made. In one sense, this operation might be

termed operation on the basis of predicted rather than measuredvalues.

The direct result of this property is that such systems will be able to

successfully cope with temporary loss of feedback data due to such

phenomenaas fading or scintillation. The reliability of a system is

therefore enhancedby the use of modern filtering techniques.
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Along these samelines, the use of a modelling estimator permits

system operation under feedback signal to noise ratios that would pre-

clude operation of a conventional system. For example, in the case of

a satellite tracking system with very low signal to noise ratio (say

-20 db), a conventional system design would require a very low pass filter
to be included in the signal processing path to reduce the debilitative
effects of the noise. Since this filter is in the primary loop, it sets

the effective bandwidth of the entire tracking system. In manycases

this bandwidth is so low that the system cannot keep up with the satellite

and hence tracking is impossible under these circumstances. On the other

hand, in the system shownin Fig. 2, the bandwidth of the antenna posi-

tioning system is independent of the noisein the feedback channel. Fur-
thermore, since it is driven by the estimator output, it can follow the

satellite during high noise conditions--or even in the complete absence

of feedback signal as pointed out above. The bandwidth of the feedback

signal processing done by the estimator can be madeas low as necessary

and is governed b)_the variable gain K as described in Sec. IIl.

A priori information regarding the nature of the system dynamics

and signal properties is utilized in an efficient (if not optimum) manner

in the design and operation of an estimator. The details of the model

chosen reflect knowledge of the system dynamics, whereas signal and noise

properties are included in the values chosen for the covariance matrices

which determine the variable gains of the estimator. In a sense these

modern filtering techniques may be thought of as generalizations and

extensions of the "matched filter" idea.

It might appear that modern filters such as the Kalman estimator

would entail considerable complexity in implementation. This is not

necessarily true. To be sure a complete and general realization would

most likely require a digital computer. Even in this case, however, for

low order systems even the smallest of digital computers will suffice.

In those instances where, for example, the variable gain can be pre-

programmed, or approximated by a constant value, or where the model takes

a particularly simple form (as in the satellite attitude control case),

the estimator might well be realizable by simple analog elements.
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The Kalman Filter is adaptive in two senses of the word and hence

is capable of achieving performance superior to that of a fixed filter.

In the first sense, the effective gain K of the correction portion of

the filter is dependent on the quality of the feedback information. If

the variance of the measurement is low and that of the present estimate

is high, then the measured data is weighted heavily. The converse is

also true. Thus, the Kalman filter adapts its behavior to the estimated

quality of its own output and to the quality of the measurement data it

is receiving. This form of adaptation has been referred to as open-loop

adaptation since adaptive action is taken as a direct function of measured

quantitites (the covariances in this case) and no feedback is involved.

Secondly, when the state vector is augmented, so that the estimator is

also estimating the values of system parameters, then it is adaptive

in an analysis-synthesis sense as well. The estimation of the system

parameter values constitutes the analysis step, whereas the synthesis

step consists of using these estimated values to improve the estimator

model and hence improve its overall performance.

Since, under equal operating conditions, modern filtering techniques

promise performance superior to conventional techniques, it is reasonable

to expect that their performance will still be acceptable under deterio-

rated conditions when conventional filters can no longer perform properly.

Advantage can be taken of this feature, for example, by reducing the re-

quired transmitter power for reliable tracking, thus reducing the on-

board weight required for this function and making room for other scien-

tific equipment or reducing the boost energy required. In the satellite

attitude control context it presents the possibility of using less

sensitive detectors at a possible savings in system weight and complexity.

The emerging field of laser communication will place very stringent

requirements on future earth-based and space vehicle based tracking,

pointing, and attitude control systems. The control methods discussed in

this memorandum constitute one possible solution to this demanding problem.

The development presented in Secs. II and III has been kept purpose-

ly general in nature. This generality can rightfully be cited as an ad-

vantage of this approach to systems control. Upon reflection, it becomes
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evident that the approach indicated in these previous sections is quite

general, and could easily be applied to a variety of system problems

differing widely in context and detail from the two examples quoted

throughout this memo.

V RESEARCH PROBLEMS

The principles discussed in this memorandum have been developed

to the point where they can be applied in the immediate future to a

satellite tracking or stabilization problem with almost complete assur-

ance of success. Furthermore, the expected advantages to be gained from

such application have been pointed out. The next logical step in the

development of this method would be its implementation in an actual

tracking or attitude control situation and the determination from

operating experience of the benefits realized and the practical applica-

tion problems that are yet to be resolved.

There remain several interesting questions of a theoretical

nature in the application of modern filtering techniques to the problems

of satellite tracking and attitude control. The most specific question

concerns the mathematical models used to describe the signal generating

and response mechanisms. In some cases, such as setellite rotational

dynamics, the model is straightforward and simple in form. However, the

model for satellite orbit mechanics is quite complex. The extent to

which such complex models can be simplified for practical implementation,

and yet retain essentially optimum estimator performance has not yet been

determined. In addition, appropriate descriptions for the noise processes

and possible simplifications thereof, have not in many cases been

formulated.

9
The results of combined optimization theory indicate that in a

combined estimation and control problem such as we have here, the optimum

control decisions must in general be made on the basis of the probability

density over the state space, rather than on the basis of any specific

estimate of the state vector. The only known exception to this statement

I0
is the linear Gausslan case where it has been shown that the information

contained in the distribution is completely summarized in the
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estimate. For other situations, the extent of system performance

degradation suffered by using only a single estimate rather than the

entire density function should be determined. Since the determination and

evaluation of a complete probability density function involves consider-

able computational complexity, it would be desirable to approximate

the complete density function by perhaps its first several moments. The

incremental gain in performance for each additional term included in

the approximation should be evaluated.

The properties of the Kalman-Bucy estimator have been rigorously

determined only for the case of a linear plant and Gaussian noise and

disturbances. The several techniques available for extending the appli-

cation of these filtering methods to nonlinear and nonGaussian situations

should be rigorously examined to determine the significance and properties

of the resulting estimates.
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MEMORANDUM2

EVALUATIONOFMODERNESTIMATIONANDCONTROLTECHNIQUES
AS APPLIEDTO SATELLITETRACKINGANDATTITUDESTABILIZATION

I INTRODUCTION

i*
This memorandum is a sequel to Memorandum i. Its purpose is to

specify those tasks necessary to evaluate the extent of system perfor-

mance improvement resulting from the application of modern estimation

and control techniques to satellite tracking or attitude control. In the

interest of brevity, only the satellite tracking problem will be dis-

cussed in this memo, although a directly analogous discussion applies

to the attitude control problem.

The evaluation of system performance, when conventional or modern

techniques are used, may be divided into three distinct tasks. The first

involves the development of a complete mathematical description of the

system and its inputs. Second, this description is converted to a pro-

gram suitable for use on any of a variety of digital computers. Finally,

the system performance is evaluated for several sets of conditions, using

first conventional techniques and then modern methods. The completion of

these tasks will result in a flexible general-purpose program that can be

used to test a variety of systems. In particular, by testing systems of

both modern and conventional design, a quantitative measure of their rela-

tive performance is obtained. In addition, since system optimality is

only in terms of the system description employed, evaluation of system

* Reserences are listed at the end of this Memorandum.

** In this context, the word satellite does not necessarily refer to

a near-earth vehicle only.
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performance via this program will indicate those areas where the system

description must be expanded or revised.

These three tasks are discussed in greater detail in the following

sections.

II SYSTEM DESCRIPTION

For the purpose of a mathematical description, a satellite track-

ing system can be considered to consist of five major parts:

(I) Signal generating process

(2) Measurement system including measurement noise

(3) State estimator

(4) Controller

(5) Drive system dynamics including load disturbances.

These divisions are illustrated in Fig. i.

_ ACQUISITIONINFORMATION

SATELLITE _

STATE
EST I MATOR

CONTROLLER
ANTENNA s' f
DRIVE (

SYSTEM -_

ANTENNA

(8 AND (¢

RECEIVER I
AND

DEMODULATOR

(MEASUREMENT SYSTEM)

FIG. 1 SYSTEM CONFIGURATION

SIGNAL
GENERATING

PROCESS

The equations describing the behavior of each o£ these components must

be stated explicitly in order to carry out a system simulation.
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A. Signal Generating Process

For an initial simulation of the satellite orbit signal generating

process, it will be sufficient to consider the orbit to be the solution

of the classical two-body problem, ignoring higher order terms which account

for the effects of other celestial bodies and the non-uniformity of the

earth's gravitational field. Making this approximation does not limit

the generality of the approach since the omitted terms can easily be added

to the equations of motion at a future time. One advantage gained by

using the simplified orbit equations is the fact that the solution is

known to be the Keplerian ellipse, which can be described by six orbital

elements. Employing this representation will greatly simplify the compu-

tation required for an initial simulation.

The motion of the earth, and hence of the tracking site, can be

easily described by a set of kinematic relationships describing the earth's

rotation about its axis. (Since the origin of the coordinate system lies

at the earth's center, and the earth's axis remains fixed in this coordinate

system, the earth's rotation on its axis is the only motion of interest

here.) The vector difference between the position of the satellite in

its orbit and the position of the tracking site constitutes the input signal

for the tracking system.

B. Measurement System

The measurement system of a satellite tracking system includes

the receiving antenna structure together with the receivers and demodulators.

To model the operation of the antenna structure it is necessary to convert
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the input signal into "radar coordinates", i.e., azimuth, elevation, and

range. This can be easily accomplished by means of a well known coordinate

transformation matrix. The antenna structure is then represented by two

non-linear functions (one for azimuth and one for elevation) which relate

the received signals to the antenna angular pointing error in azimuth and

elevation respectively. Noise signals must be added to each of these

signals. The principal source of this noise in an actual system is the

thermal noise introduced by the receivers themselves. Experience has

shown that this noise can be accurately described as narrow band Gaussian

and can be easily simulated by means of a digital noise generation routine.

The bandwidth of the receiver and demodulator electronics is usually

high enough that their dynamic effects are entirely negligible. The

measurement system is therefore completely described by the coordinate

transformation matrix, the non-linear functions and the noise statistics.

C. State Estimator

The purpose of the estimator is to generate from the available

data a best estimate of the present state of the satellite with respect

to the tracking site. This estimate is used as the input to the antenna

control system.

The equations of a Kalman-Bucy recursive estimator are described

1
in detail in Section III C of Memorandum 1 . These equations are

already stated in a form to facilitate direct implementation by digital

computer. Much of the programming required for this implementation is
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already available in an automatic synthesis program developed by Kalman

2
and Englar.

In the event that the tracking site is operating in a radar

mode, there is a two-way transport lag between the transmission of the

radar pulse and the receipt of the echo. The equations for the Kalman-Bucy

estimator given in Ref. 1 can be easily modified to accommodate this situation.

D. Controller

Several of the intended functions of the controller would be

superfluous in an initial program. These include preprogrammed compen-

sation for calibratable errors such as sag, warpage, and encoder errors.

Implementation of these compensations would, in effect, amount to adding

in a known error, only to subtract it out again. Hence very little

further information on the system's performance would be gained.

On the other hand, the very important function of compensating

the drive system for dynamic lags must be included. It is well known that

for a linear system the optimal controller (in a least mean square error

sense) consists of a linear function of the state and input variables,

and is constant for steady state operation. Since some of the system

state variables may not be directly measurable, as discussed in the next

section, estimates for their values can be obtained from the state estimator

by enlarging the model used.

E. Drive System Dynamics

During a tracking operation, when the incremental input commands

are not likely to be large, the dynamics of the antenna drive system can
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be considered to be completely linear . A quite accurate representation

is obtained when the system dynamics are represented by a differential

equation of third order in each axis (azimuth and elevation). In addition

to the above dynamics, there exist resonances of the reflector and feed

structures which affect the pointing direction of the antenna but are not

measurable by the antenna position or velocity pickups. These dynamics

give rise to the unmeasurable state variables referred to above. Their

effects, however, are included in the monopulse error signals and hence

their values may be estimated by the estimator.

The predominant load disturbance experienced by a tracking

antenna is that of disturbance torques resulting from wind gusts. Newton,

3
Gould and Kaiser have shown that these torques may be described as a

random variable with power density spectrum given by

2

_(s) _ u
- 2 2

(-s +u

_, _ : measurable parameters

A random variable generated digitally according to this specification can

easily be included in the above description of plant dynamics to include

these load disturbances in the overall simulation.

III PROGRAMMING

The system description obtained in task 1 in the form of a set of

equations and definition of variables, can be translated into a digital

It is assumed that anti-backlash devices are used, as is now common

practice.
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computer program. A universal programming language such as FORTRAN IV

should be used so that the simulation can be performed on any convenient

computer of appropriate size

It is intended to organize the program in such a manner that individual

sections can be conveniently modified or replaced. For example, the state

estimator and optimal controller portion of the program would be replaced

by a simulated conventional controller to obtain a comparison of system

performance under both conventional and modern control.

IV SYSTEM PERFORMANCE EVALUATION

Included in this final task is the actual operation of the program.

Both conventional and modern techniques will be used in a variety of

environmental situations ranging from minimal noise and disturbance diffi-

culties to input signal to noise conditions which preclude successful

operation of the conventional methods.

Analysis of the results obtained produce two valuable pieces of infor-

mation. First, a quantitative measure of system performance will be

obtained. The performance of the system employing modern estimation and

control techniques may be used as a "yardstick" against which to compare

the performance of systems using other techniques. Second, an optimal

system controller is only optimal for the system description for which it

is derived. If this description is not appropriate, optimal performance

All programs developed at SRI would be made available to ERC,

together with program descriptions, to enable ERC personnel to

perform concurrent system simulations.
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will not be achieved. By testing several modifications of the system

description, those equations or expressions that must be expandedor re-

vised will becomeevident.

Ultimately the program could be used with actual recorded tracking

data to test a particular system design's performance under actual opera-

ting conditions.

V LEVELOFEFFORT

The estimated level of effort required to complete the tasks included

in the preliminary evaluation of the performance of modern filtering

techniques applied to satellite tracking is as follows:

(i) Obtain explicit development of a mathematical system description,

including both modernand conventional control, in a form suitable

for computer programming 1 man-month

(2) Program of the above equations in a programminglanguage such

as FORTRANIV, and debug the program 1 man-month

(3) Carry out several comparisons and perform data analysis and

evaluation 2 man-months
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RELIABILITYCONSIDERATIONSIN SYSTEMDESIGN

In the present technical memorandum,the problem of designing a

system which strikes a best balance between performance and reliability

subject to equality and inequality constraints is formulated. A discussion

concerned with trade-offs between reliability parameters and performance

parameters has not been found in the reliability literature.

In a forthcoming technical memorandum, the problem of optimally

allocating (in terms of satisfying the mission objectives) the remaining

equipment and other resources after a failure has occurred is formulated

and the implementation of a monitoring and control system capable of

accomplishing this function is discussed. The first formulation given

in the present memorandum does not contain any adaptive concepts; the

second as discussed in Memorandum 4 does in the sense that the system

makes best use of the remaining resources, thus adapting itself to the

changed conditions resulting from equipment failure.

I DEFINITIONS AND TERMINOLOGY

The system under discussion contains N interconnected subsystems of

capability x. and failure probability _i' i=l,...,N. The general term
i

capacity encompasses all those variables associated with a subsystem

which contribute to the performance of the overall system. This per-

formance will be measured by Q(x).

The function Qi(_) is defined as the performance after the i ' th

subsystem or equipment has failed. This definition of Qi allows for the
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rearrangement of the subsyste_as well as for redundancy. The performance

Qi occurs with probability _i"

The function V(x,_) is defined as the value or expected system

performance assuming single, and complete failures; thus

_ _ _ . (i)V(x,_) = q(x)(i - _. _i ) + 7. Qi(x) _i
i i

The cost or weight c. of the i'th subsystem depends on the capacity
1

x i and the failure probability _i; thus

c.1 = c.(x.,i i _i ) (2)

The total system cost (or weight) is thus

c = Z c.(x.,a.) (3)
1 1 1

i

The selection of the system parameters x.i and @i is not completely

arbitrary, but must satisfy certain constraints; thus

x. e X.
1 1

_i _ Ui

(4)

In particular

• z o (5)
0 <_ _i < i , x i

II PROBLEM STATEMENT

Given a quantitative statement of system performance in terms of the

x and an upper bound on the cost (or weight) of the system, it is desired
i

to maximize the value V(x, _) subject to the constraints x. _ X _i ¢ U-- 1 i' i"

Alternatively, one may wish to minimize C subject to a minimum bound on

the value.

As stated, this is a nonlinear static optimization problem which,
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as a rule, cannot be handled by standard calculus because more often

than not the solution is located on a constraint. Nonlinear

programming and dynamic programming both appear capable of handling

problems of this kind.

1
I II THE KUHN AND TUCKER THEOREM

This theorem is of major importance in nonlinear programming. Since

control engineers are usually not familiar with this theorem, it is

restated here.

Given: (1)

(2)

A cost F(x) of the vector variable x

Inequality constraints of the form

G(x) _ 0 (6)

(3) Equality constraints

H(x) = 0 (7)

and assuming convexity for F, G, and H, the conditions under which F(x)

is minimum is d L = 0 with

£ = F(x) + T G(x) + 8T H(x) (8)

and

_i -> O, _i arbitrary (9)

_'i Gi(x)-- = 0 (10)

The _i and 8i are the dual variables associated with the inequality

constraints (6) and the equality constraints (7), respectively. Condi-

tion (10) implies that _i = 0 if constraint Gi(x) is not reached and

c_ > 0 in the alternative.
i

If the function F(x) is a profit function to be maximized, the c_.
-- 1

must satisfy the condition

_i _ 0 (ii)
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The main shortcomings of the Kuhn and Tucker theorem are:

I. The satisfaction of the convexity assumption which is difficult

to prove.

2. The requirement for continuous variation of the variables in the

permissible range.

3. The frequent difficulty in solving the optimization equations.

The dual variables measure the sensitivity of performance with

respect to the constraint values imposed.

in many applications.

IV ILLUSTRATIVE EXAMPLES

This is major advantage

To illustrate the method, the following contrived two examples will

be treated.

Assume that a space vehicle has the mission of making a measurement

and of telemetering this measurement back to the earth. The measurement

instrument is characterized by its standard deviation _ (the inverse of

which is taken as its capacity) and its failure probability _I" The

transmitter is characterized by its failure probability _2"

The performance of the system is measured in terms of _ by

1
Q = -- (12)

with

1
9" ->- (13)

2

for example 1 and no lower bound on _ for example 2.

There is an upper limit on the combined weight of the instrument and

the transmitter

C g 200 (14)
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The individual weights of the instrument and the transmitter are

with

1

c I -
o'_I

1
C

2 _2

0.01 < _i < 0.i

0.005 -< _2 -< 0.1

The value associated with the data received is thus

1

v = _ (1 - _l - _2 ) + 0 _l + 0 _2

The exclusion equations (10) of the Kuhn and Tucker theorem are

q_l(½ - c) = 0

_2(SI - 0.I) = 0

%o3(0.01 - _1 ) = 0

_4($2 - 0.I) = 0

_5(0.005 - _2 ) = 0

The function £ is

1 X(_ 1£(6_ S1 $2 ) = _ (1-S1-_2) + +
' ' _2

+ %o2(_1 - 0.1) + %o3(0.01 - _1 ) + %o4(_ 2 - 0.1)

+ _5(0"005 - _2 )

(15)

(16)

(17)

(18)

(19)

200)+ _0l(½ - c_)

(20)

At the optimum
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3£ - 0 - 1 1 + _2 - _3 (21)
_i _ 2

_i

3£__ = 0 = 1 X + _4 - _5 (22)
_2 _ 2

_2

3£ i - _i - _2

Do - 0 = - 2 2 _i (23)

1 1
+ -- - 200 = 0 (24)

°Wl _2

It is easily seen by setting all the dual variables _ equal to

zero that equations (21) through (23) do not have an acceptable solution,

e.g. the optimum must be located on one or more constraints. After a few

trial calculations, it can be guessed that the solution is located on the

constraint a = ½. The optimization equations are thereafter resolved

to determine k, _i and _2 and to check this solution by verifying that

_i < O, since this is a necessary condition for the optimum.

15

_i = 0.01707

_2 = 0.0121

The result

q01 = - 3.952

V = 1.9416

k = -2.91 10 -4 (25)

For the second example, we assume that the lower bound on c is zero

and we allow the possibility of both equipments failing. Then

and

(I - _i - _2 + _1'_2 ) (26)V=

£(_, _i,_2 ) = _ (i - _i-_2+_i_2 ) + k( -j--I + 1
_i _2

200)
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+ _02(_ 1 - 0,1) + _03(0.01 - _1 ) + _04(_2 - O. 1) + _05(0.005 - _2 )

The optimization equations are now

5£ 1 _2

5_ 1 = 0 = --_ + _ 2 + _2 _3
_1

(27)

(28)

5___y = o = -1 + + _
5_2 -E (Y 2 q)4 _5

_2

5£ -(i - _i-_2 + _i_2 )
= o = (30)

5o 2 2

(_ _ic_

As an initial guess, we try _i = 0.i, _2 = 0.I and find that _4 is

positive, indicating that the upper bound of _2 is not reached.

For _I = 0.i, the optimization equations yield the following optimum

solution:

_i = 0.i

_2 = 0.071

= 0.054

V = 15.4

k =-0.0826

_2 = -136

It should be noted that the sensitivity about the optimum point is

quite small; for example, a choice of _i = _2 = 0.i leads to a value of

15.2 instead of 15.4

The dual variable ql measures the sensitivity of V with respect to

m
= ½, that isthe constraint

AV

91 = m (26)
A_
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Similarly, the dual variable k measuresthe sensitivity of V with respect

to the weight constraint C, that is

)_= _ A._.VV (27)
AC

V COMPUTATIONAL PROCEDURES FOR NONLINEAR PROGRAMMING

Clearly, if the number of variables becomes larger, it is increas-

ingly difficult to guess which variables must lie on constraints. There

now exist efficient computational procedures capable of handling up to

several hundred variables. The most straightforward approach is to

apply Newton's method to the linearized optimization equations (21) through

(24), replacing the primary variables X.l and _i by their duals once a

constraint is reached. The number of unknowns is thus always equal

to the number of optimization equations.
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VI EXTENSIONS

The design procedure outlined above can be extended by relaxing

someof the restrictive assumptions made. In particular:

i. It is possible to include partial equipment failures by means

of the probability density function P(Xi) _ where the variable x.l ranges

over all possible values below nominal possibly in discrete steps. It is

then necessary to calculate tile function Q.(x) for the whole range of
1 --

variation of x. below nominal capacity. The expected performance for
1

x below nominal is thus
i

f Qi(x) p(x i) dx.
-- 1

X.
1

(28)

2. It is also possible to consider multiple failures involving

the equipments i and j by defining the remaining performance Qij which

occurs with probability _i _j for complete failures. In the case of

partial failures, the corresponding expected performance for both x. and
1

x. below nominal is then
J

f_ j"
X X

i j

Qij r(xi' xj) dx.l dx.j
(29)

This process can easily be extended to any number of simultaneous failures.
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VII SHORTCOMINGS

At the present stage, the following shortcomings are noted:

i. The failure probabilities _. are often not available excepti

for certain military equipment.

2. The calculation of Qi(_) may be quite involved in those cases

where the failure of equipment i entails the failure of adjacent equip-

ment or where the function of equipment i can be taken over partly or

wholly by adjacent equipment.

3. The functions c.i (xi' _i ) are usually not continuous since the

designer only has a limited numberof equipment alternatives. To handle

this situation with nonlinear programming, he would first obtain the

function ci (xi' _i ) by fitting a curve to the available data, then

obtain the optimumpoint, and finally round off to the nearest alterna-

tive. This rounding off procedure does not necessarily lead to an

optimum solution in terms of the available alternatives, but should be

close.

VIII DYNAMICPROGRAMMINGAPPROACH

In general, the value V is a function of the form

V(x, _) = Q(_) (i - _a i) + Z _i Qi (_)
i i

(30)

Under special circumstances, V reduces to a function of the form

V = Z fi(xi, _i ) (31)
i
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in which case dynamic programmingcan be applied conveniently as
3

follows:

It is desired to maximize V by selecting _ and _ subject to

CN = _ ci(xi, _i ) _ C
i

(32)

We define

I (CN, N) = max {_ fi (xi' _i )}

_,_ i

max

xI,S 1

max {fl (Xl' _i ) + _ f.(x.,_.)}

xj,_j j 3 3 3

j=2,...,N (33)

max

Xl,_ 1

[ fl(Xl,_l) + I (C N - Cl, N-I)}
(34)

At stage _, the recursive relation (34) is written

I (C N - Z c. _-i) = max { f (x ,_) + I (C N - Z c1,ff) }
_-i J' _

x,_
(35)

Equation (35) constitutes a dynamic programming algorithm in the single

state variable C N - F c_,j the amount left at stage _, and hence pre-
ff-1

sents no computational problems of any significance. It not only gives

the best allocation policy and value for the allowable cost C, but for

all cost 0 < C N g C; this is valuable additional information.

In the general case, V depends on _ and _ as in (30). Under those

circumstances, the maximization (33) does not separate and a recursive
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relation of the form (35) cannot be written. From simple examples

treated in the course of this study, it appears, however, that repeated

application of the recursive equation

I(C N - Z c., _-1) = max
3

_-i x,_

[ V(x , _ff; x , _ ) + I(C N - Z c j, if)]

(36)

where x
= Ix I, ..., x__ I, x_+ I, .-., XN] and

b = {_1 .... ' _G-I' PLOt+l' "''' PN ]

denote the optimizing values found in the previous iteration, coverges

toward the optimum after a few iterations when certain precautions are

taken.
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IX ILLUSTRATIVEEXAMPLE

The example previously treated by nonlinear programming is now

treated by dynamic programming. To illustrate the ability of dynamic

programmingto handle discrete variables, we assumethat the equipment

available is characterized as follows:

Transmitter:

Capacity Failure Probability Cost

(_I)

A 1 .0055 180

B 1 .0067 150

*C 1 .01 i00

D 1 .02 50

E 1 .05 20

F 1 .i0 i0

Measuring Equipment

Standard

Deviation Failure Probability Cost

(c_)

A

B

C

D

E

F

G

H

*I

J

K

(_i)

2 .01 50

2 .025 20

2 .05 i0

1 .01 100

i .02 50

1 .05 20

1 .i0 I0

0.5 .011 180

0.5 .02 i00

0.5 .05 40

0.5 .10 20

For this example problem involving two subsystems only, the recur-

sion equation (35) can be carried out easily by hand. The resulting

optimum combinations of equipment together with V are shown in terms

of the total cost C N in Fig. i.

It is seen that the equipment combination C, I' (_I = 0.02,

_2 = 0.01, J - 0.5) is optimum for C N = C = 200, resulting in V = 1.94.
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200

190

180

170

160

150

140

130

120

CN

I10

I00

90

8O

70-

6O

50-

40

30

20

I0

0

1.99,['

I .92,U

I

t.86, I'

1.86_I'.

VALUE. I

1.86,

I

1.80, J'

1.80, J'

1.80,J'

1.70,K'

1.70,K'

1.60,K'

0.80,G'

(2) INSTRUMENT

FIG. 1 OPTIMIZATION BY DYNAMIC PROGRAMMING

(I) TRANSMITTER

At stage (1), the cost of transmitter F through A is marked. At stage

(2), the most appropriate instrument-transmitter combination is selected

for a given total cost C N. The inclined lines joining stage (2) to stage

(1) identify the optimum equipment combinations, for increments of 10 of

CN. Some of these inclined lines terminate at stage 1 at points not

marked by any equipment; the significance of this is that some of the

allowed weight C N is not used.
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This should be comparedwith the results previously attained by nonlinear

programming, i.e., _i = 0.01707, _2 = 0.0121, _ = 0.5, V = 1.9416, under

the assumption that the variables _i' _2' _ are continuous.

It is furthermore seen from Fig. i. that the sensitivity of V with

respect to C N is very small; thus, by selecting, for example, equipment

J' and E, the value drops from 1.94 to 1.80, but the weight drops from

200 to 60. This information is also provided by the Kuhn and Tucker

theorem--see (27)--but only Eor small variation AC.
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MEMORANDUM 4

RELIABLE OPERATION OF SYSTEMS

This memorandum considers the problem of operating a system so that

it performs its mission in a reliable manner. Of particular concern will

be the amount of redundancy that should be built into the system and how

this redundancy can be best used in the case of a failure.

I INTRODUCTION

The prime question to be treated is: In case of a failure, how is the

remaining operative equipment best utilized? For this question to have any

meaning, either the remaining equipment must be capable of performing, at

least partially, the functions of the failed equipment or there must be

alternative objectives which the system may perform without the failed

equipment. In other words, the system must have redundancy built into it

and no system without this redundancy will operate satisfactorily when failures

occur no matter how much effort is exerted toward adapting to changed circum-

stances.

To make use of any available redundancy, three tasks must be performed:

I. Detection of failures.

2. Decision of what to do about failures.

3. Implementation of these decisions.

The similarity of these functions with the functions of measurement,

control decision, and actuation in a control problem suggest the use of a

state space model to describe the system. Such a model is developed in Sec.

II and its use is illustrated in Sec. III.

Of equal importance with the problem of using available redundancy of a

given system is the problem of designing that redundancy into the system.
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What equipment should be duplicated or backed up, what alternative mission

objectives should be considered, how extensive should the failure detection

equipment be and what alternative modesof operation should be allowed?

Section IV considers the use of the mathematical model developed in Sec. II

to answer these questions as well as the operational questions posed above.

II MATHEMATICALMODEL

The behavior of a system can be described in terms of its state, which

by definition completely summarizes its past history. The operating status

of its componentsand the successful occurrence of certain events are of

prime importance to the operation of a system. A state space description of

both these system properties is presented in the present section along with

equations describing their change in time.

Let x (t) give the operating status of the i th componentat time t,1

where each different modeof operation is assigned a number. For example,

if the first componentis the sequencer, then xl(t) = 0 might represent

sequencer failed at time t, xl(t) = 1 sequencer turned off, and xl(t) = 2

sequencer turned on. Note that failure, which implies a random breakdown

which is difficult or impossible to reverse is quite different from turned

off, which is an easily changed condition.

Most components will have at least the three modes of operation des-

cribed above; however, many components may have more modes of operation. For

example, a transmitter may be capable of operating at two power levels and

hence may have five possible modes: 0, completely failed; 1, turned off;

2, low power due to failure; 3, low power by choice; and 4, high power. It

should be emphasized that when talking about the status of a component, we

are not restricting ourselves to failure modes but are describing the complete

operatin$ status.
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Let yi(t) describe the status of the i th event at time t. In most

cases, yi(t) will have two possible values, 0 and l, indicating that the

event has not yet occurred or that it has occurred. (Note that once yi(t)

goes from zero to one it remains there.) In somecases, however, it maybe

convenient to define compoundevents and then yi(t) can take on more than

two values. In general yi(t) will increase by one as each part of the

compoundevent occurs successfully.

Events, failures, or directed changes in operation maytake place at

any time; however, for purposes of description and computation it is con-

venient to quantize time. The rate of sampling may vary greatly as a function

of the phases of the mission. For example, a very high sampling rate is

likely during a midcourse maneuverwhereas a low sampling rate is reasonable

during cruise.

It is now possible to describe the operation of the system in terms of

x.1 and Yi" There are two basic ways in which the operating status of a

componentmaybe changed: a randomevent may cause a failure in the component,

or the componentmay be switched by command. Let the different types of

randomfailures be numberedand let w.(t) be 0 or 1 according to whether orJ

not the j ' th failure has taken place. Similarly, set u'(tk+l)l = 1 if the

i ' th command is given during the interval (tk, tk+l ) and zero oth_wise.

Then

x(tk+ 1) = fk[x(tk), Y(tk+ 1), w(tk+ 1), u(tk+ 1)] (1)

where the letters without subscripts are one dimensional arrays whose elements

are the corresponding subscripted variables.

Two comments about (1) are in order. First, the variables and functions

are not the ordinary continuous variables and functions of standard control
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theory; rather, the variables are discrete and the functions are logical

in nature -- in most cases best defined by tables. Second, in u(tk) are

included only those commands which may be given in response to unforseen

occurrances. Changes in operation which occur as a function of time or

phase of the mission are manifest in the form of fk"

Given (i) and the probabilities of the w. going from 0 to 1 in the
1

interval t k to tk+ 1 it is possible to calculate*

A

Fk(a ; b; c, d) = Pr[X(tk+l) = a/x(tk ) = b, u(tk+l )= c,y(tk+l )= d]

(2)

Hence the operation of the system components is governed by a time varying

Markov process:

Pk+l (a) = E Fk(a; b; c, d) Pk(b)
b

where

(3)

A

Pk (a) = Pr[X(tk) = a] (4)

A model very similar to that given by (2), (3) and (4) is used by Sandler 1'2

where, however, only failure modes are considered.

The major part of classical reliability theory is concerned with deter-

mining the probabilities of failures occurring (i.e. the w's going from 0 to 1).
1

Since in this memorandom the concern is with how these probabilities are used

rather than holy they are determined, the present theory compliments rather

than replaces classical reliability theory.

The occurrence of a particular event depends upon the previous occurrence

It is also possible to allow the possibility of random repair by giving

a non-zero probability of w. going from 1 to O.
1
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of other prerequisite events and on the proper operation of the needed

components; hence

Y(tk+ I) = g[y(t k), x(tk+ I), k+l] (5)

In order to make a decision (i.e.choose u(tk)), it is necessary to

make measurements on the system. These measurements are embodied in the

vector z(t) where

z(t) = h[x(t), y(t), t] (6)

Decisions are made on the basis of the information contained in the past

history of these measurements. A major simplifying assumption is that x(t k)

and y(t k) can be completely determined from z(t) for t < tk; then the decision

may be made as a function of x(t k) and Y(tk).

To complete the model the following performance function is defined:

N

J = _ _[x(t k), k] + L[y(tN) ] (7)
k=l

where _[x(tk) , k] is the value of the system components being in operating

status _ during the interval tk_ 1 to t k and L[y(tN)] is the value of the

occurrence of the events specified by Y(tN) , which tells what events have

occurred and failed to occur in the course of the mission. It is assumed

that for an event to be counted as occurring, it must occur at the proper

time. If an event can occur at varying times with varying value or effect

on the remainder of the mission then a separate Yi must be assigned for each

possible time of occurrence.

III ILLUSTRATION

To illustrate the application of the mathematical model developed in the

previous section we consider a somewhat contrived example of the flyby mission

whose primary purpose is to take TV pictures of Mars with a secondary goal of
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performing several experiments in route. The system consists of the following

subsystems and modes of operation:

i. Sequencer

0 failed

1 turned off

2 working

2. Command System

0 failed

1 turned off

2 working

3. Power System (Two Solar Panels and Batteries)

0 failed

1 only battery

2 battery and 1 panel

3 completely working

4. Communication

0 completely failed

1 turned off

2 low power due to failure

3 low power due to command

4 high power

5. TV System

0 failed

1 turned off

2 operating
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6. Interplanetary Science

0 failed

1 turned off

2 minor experiments only failed

3 minor experiments turned off

4 all experiments working

7. Attitude Control

0 failed

1 turned off

2 working - acquisition mode

3 working - cruise mode

4 working - midcourse mode

8. Guidance (midcourse motor)

0 failed

i turned off

2 operating

The mission takes place in the following phases:

i. Launch

2. Cruise

3. Midcourse

4. Cruise

5. Terminal

The following important events should occur during the mission:

i. Successful launch

2. Successful separation of launch vehicle and space craft

3. Successful midcourse
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4. Successful flyby

Rather than giving all the state equations for the system, it is

sufficient to give examples: If x3 becomes0 at any time (i.e. if the

power system fails) then all other state variables become1 (i.e. turned

off). If x3 is not zero then in the time interval t k to tk+l,Xl changes

from 2 to 1 (i.e. the sequencer fails) if randomevent 1 occurs. If random

event 1 occurs at a constant rate _ then

Pr [wl(tk+l) = O/Wl(tk) = O] = e-_(tk+l - tk) (8)

To illustrate the dependence of the operation of components upon

previous events, note that if launch fails all subsystems will be failed

(i.e. O) and that if separation fails x 3 (the power system) will be limited

to 0 or i; x4(communications) to O, i, or 2; and x5(TV) , x6(science) , X 7

(attitude control), and x8(guidance) to 0. Furthermore, it is clear that the

occurrence of each event depends upon the successful occurrence of the

previous event. Occurrence of the midcourse maneuver requires that x 2 = 2,

x 3 = l, x 4 = 2 or 3, x I = 4 and x 8 = 2, if it is assumed that the midcourse

maneuver is or can be controlled from ground.

As examples of how built in redundancy may allow partial mission comple-

tion, consider the following: if one solar panel fails and if the remaining

panel is capable of supplying power for the major, but not all, interplanetary

science experiments, then the minor experiments may be turned off to allow

continued operation of the major experiments without draining the battery.

If both solar panels fail, but if the battery is capable of storing enough

energy to take the terminal TV picture, then everything except communications

and command might be turned off in order to conserve this energy and still

complete the major goal of the mission.
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IV APPLICATIONOFTHEMODEL

Once a description of a system in terms of the model presented in

Section II has been developed, then by use of optimization procedures

such as dynamic programming the optimum decisions for the operation of

the system under all circumstances and the optimum expected performance

can be determined. With this information the following may be accomplished:

i. Automatic systems for implementing the optimum decisions may be

installed on board the space craft or on the ground. Alternatively these

decisions may be determined on the ground in real time.

2. By perturbing the design of the given system, those changes vl_ch

yield most improvement in performance can be determined. In this way the

design of the system may be improved and critical areas may be delineated.

In addition to providing a reasonable method of determining optimum

decisions and performance, the model developed in this memorandum has the

following important properties:

i. It considers the possibility and value of partial successes.

2. It takes into account the effect not only of chance occurrences but

also changes _n operation caused by decision.

3. It is quite flexible in the allowed complexity of system description.

For example, in the early stages of design a very simple model is likely to

be used, with an order of complexity at the level of the illustration. In

more advanced stages of design and during operation o2 the system a considerably

more detailed model would be required.

4. It is in a form easily amenable to computer programming.

To make such a mathematical model a useful tool for the design and oper-

ation of space systems, two important tasks need to be accomplished:

i. Development of a computer program embodying the mathematical model and
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suitable optimization technique.

2. Use of this computer program on a suitable realistic example.

It would seem most efficient if these two tasks were performed

simultaneously since the experience in trying to model a real life situation

should have great effect on the programming techniques used.
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MEMORANDUM5

A SIMPLIFIEDTECHNIQUEFORTHESYNTHESIS
OFMODEL-REFERENCEDADAPTIVECONTROLSYSTEMS

The purpose of this research is to derive analytically an adaption

technique that is extremely simple to implement for use with model-referenced

adaptive control systems. This feature is a distinct advantage, compared

to other techniques that have been described in the literature, and makes

the simplified adaption technique very attractive for practical applica-

tions. The approach used in this study employs state-space methods.

Someof the results of an extensive stability analysis, which employs

Lyapunov's second method, are presented in order to give an indication

as to the performance capabilities of the simplified adaption technique.

A simple example is discussed for the purpose of illustrating certain

important aspects of this study.

I INTRODUCTION

In recent years a great deal of effort has been devoted to the

study of adaptive control systems. An extensive survey and review of the

literature in this field is presented in Quarterly Report 1 under Contract
1NAS12-59.

The interest in adaptive control systems has been largely motivated

by a sizable class of problems for which conventional techniques for

synthesizing the controller have proven inadequate. Specifically, a

controller having fixed parameters maynot be capable of achieving the

desired system performance with a given plant. Such a situation may
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occur when the parameters which describe the plant vary over a wide range

of values during the operation of the system (i.e., when the dynamic

characteristics of the plant changemarkedly). These parameter variations

maybe deterministic, stochastic, or wholly unpredictable. To make the

problem more complex, the entire system maybe directly affected by an

environment that varies drastically over the range of operation. In

addition, the performance criterion may vary as the system encounters

different operating conditions which necessitate different control

policies. Also, the description of the plant maybe incomplete oi'

imprecise becauseof the nature of the problem. Practical examplesof

considerable importance in this class of problems are found in the design

of high-performance aircraft and missiles.

The concept of model-referenced adaptive control systems evolved

from work done by Whitaker_ et a12; a block diagram description is shown

in Fig. i. The model-referenced approach is "closed-loop" with respect

to system performance; i.e., the performance criterion is periodically

or continuously monitored and, using this information the parameters of

the adaptive controller* are adjusted to extremize the performance meas-

ure. Additionally, this approach has the advantage of avoiding the plant

identification problem essential to other methods. Adaption techniques

employed in conjunction with this approach have been developed by Osburn3

4
and Donalson . The performance criterion P that is employed is an even

function of e(t) in Ref. 3 and is a function of e(t) and its deriva-

tives in Ref. 4, where the performance error e(t) is the difference

The parameters of the adaptive controller are also referred to as the

adaptive parameters.
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between the adaptive control system output c(t) and the reference model

output cD(t). Each adaptive parameter is adjusted at a rate directly

proportional to the partial derivative of P with respect to that param-

eter. Hence, the adaption proceeds toward a minimumapproximately in the

direction of the gradient of P (with respect to the adaptive parameters);

i.e., the adaption technique approximates a surface search along the path

of steepest descent. Osburn and Donalson generate the necessary partial

derivatives of P by procedures which are similar to each other. How-

ever, in order to obtain these partial derivatives, both procedures re-

quire a separate mechanization of the reference model for each adaptive

parameter in the system.

Although the model-referenced approach has wide applicability, the

complexity associated with the implementation of the adaption technique,

as employed in Refs. 3 and 4, is a distinct drawback because of practi-

cal considerations. It is the purpose of this study, therefore to derive

a simplifiedadaption technique for model-referenced adaptive control sys-

tems which does not involve the complexity of implementation inherent in

the techniques developed by Osburn and by Donalson.

II PROBLEM FORMULATION

The model-referenced adaptive control system that is considered in

this report is illustrated in Fig. 1. The study considers the class of

dynamical systems that can be described by linear, ordinary differential

equations (i.e., llnear, lumped-parameter systems).

A. Adaptive Control Systems

The adaptive control system (plant plus adaptive controller)

is described by the linear equations with time-varying coefficients:
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where

i(t) = F (t)x(t) + D (t)u(t),
S S

c(t) = MTx(t),

x(t) = n-dimensional state vector,

u(t) = q-dimensional input vector,

c(t) = scalar output

F (t) = n x n feedback matrix,
S

D (t) = n x q input matrix,
S

M = n x 1 output matrix.

(i)

The plant (physical) process to be controlled contains an arbitrary

number of physical parameters that vary in an unknown manner; i.e., there

is no explicit knowledge of the behavior of the time-varying plant par-

ameters. However, it is assumed that the basic differential equation

description of the plant is known, and that the necessary plant states

are available. In practice, the plant might represent a high-perform-

ance aircraft or a missile, whose parameters vary markedly over various

flight conditions (e.g., altitude and velocity). Indeed, for some flight

conditions the aircraft or missile may actually be unstable. In Fig. l,

x (t) is the state vector of the plant and u (t) is the input (or con-
P P

trol) vector to the plant.

To achieve the desired performance, it is necessary to provide the

plant with the appropriate adaptive controller. This means that there

exist values at which the adaptive parameters (these are the parameters

of the adaptive controller) can be set so that the differential equations

5-4



representing the adaptive control system are identical with the differ-

ential equations of the reference model for any values the plant param-

eters may assume. That is, any elements of the matrices in (i) which

contain time-varying plant parameters will also contain adaptive param-

eters providing the required compensation.

In general, it is possible to choose the state variables of the

adaptive control system in such a manner that only F (t) and D (t)
s s

contain the time-varying parameters, while M is a constant matrix. In

(i) it is assumed that x(t) has been so chosen.

B. Reference Model

The desired performance can be expressed in terms of certain

criteria (e.g., response time, overshoot, stability), according to clas-

sical control theory. Alternatively, these criteria can be formulated

as a set of differential equations which yield the desired input-output

relationships (desired system). In this study it will be assumed that

the desired performance is expressed in terms of a set of differential

equations which can be considered as an implicit characterization of the

performance criteria. The desired system, which will be referred to as

the reference model, is described by the following linear differential

equations with constant coefficients:

where

y(t) = FDY(t) + DDU(t) ,

cD(t) = MTy(t) ,

y(t) = n-dlmenslonal state vector,

u(t) = q-dlmensional input vector,

(2)
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cD(t) = scalar output,

F D = n x n feedback matrix,

D D = n x q input matrix,

M = n x 1 output matrix.

It is assumed that the reference model is of the same dimen-

sion (n) as the adaptive control system. In many instances, one is

concerned with problems in which the model is of smaller dimension than

the adaptive control system. However, the derivation of the simplified

adaption technique to be presented in Section III is based upon the as-

sumption that the model and the adaptive control system are of the same

dimension. This situation can be met by augmenting the model with extra

states so that it is of dimension n . These extra states are chosen in

such a manner that their effect on the behavior of the model is negligible.

Since the output of the reference model cD(t) corresponds to

the desired output for the adaptive control system when both are subjected

to the same input u(t) _ the design objective is to adjust the adaptive

parameters so that the adaptive control system output c(t) approxi-

mates cD(t) despite variations in the plant parameters. This objec-

tive can be accomplished by minimizing the magnitude of the performance

error e(t) , which is given by

= c(t) - cD(t) = MT[x(t) - y(t)] , (3)e(t)

If the initial conditions for the adaptive control system and

the reference model are equal [i.e., if x(t ) = y(t o) _ where t =
O O

initial time] , then by maintaining Fs(t) _ FD and D (t) _ D D for
S
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t a t , it would follow from (i) and (2) x(t) _ y(t) for t _ t
o o

Then, from (3), e(t) _ 0 for t a t However, it is not reasonable
o

to assume that F (t) _ F D and Ds(t) _ D D , since such an assumptions

supposes that the time-varying behavior of the plant parameters is known

precisely, and that the adaptive parameters are capable of perfectly

compensating for the variations of the plant parameters. Unfortunately,

the behavior of the plant parameters is not explicitly known. Further-

more, practical considerations for the implementation of an adaption

mechanism make it impossible to change the adaptive parameters instan-

taneously. Hence, a realistic objective is to develop a procedure for

adjusting the adaptive parameters when the performance error e(t) _ 0 .

Ill DERIVATION OF THE ADAPTION EQUATIONS

The approach to be used in deriving the simplified adaption

technique consists of obtaining an expression for e(t) that shows its

explicit functional dependence on the adaptive parameters, all of which

are contained in F (t) and D (t) . This expression for e(t) can
s s

be obtained from (3) by finding x(t) , the solution to the differential

equations of (i), and y(t) , the solution to the differential equa-

tions of (2).

It is a well-known fact that the solution to (2) is

t

y(t) = _D(t-to)Y(to) + _ _D(t-_)DD u(_) d_ t C[to '_) , (4)

o

where

_D(V) = exp FD_ = n x n fundamental matrix of the reference

model.
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In order to obtain an explicit relation for x(t) _ the matrices

F (t) and D (t) are decomposed into constant and time-varying comport-
s s

ents as foiiows:

F (t) = F D + 6F6(t)s

D (t) = D D + 6D6(t)s

(5)

where 6 is a scalar constant. The matrices 6F6(t) and 6Ds(t) con-

tain the adaptive parameters and the time-varying portion of the plant

parameters, and can be considered as perturbations of the adaptive con-

trol system matrices from the desired matrices (i.e., the reference-

model matrices) F D and D D . The scalar 6 has been introduced to

aid in the ensuing analysis, and to provide an explicit measure of the

perturbations, where F6(t) and D6(t) are normalized in some sense.

Substituting (5) into (1),

i(t) = IF D + 6F6(t)]x(t ) + [D D + 6D6(t )]u(t) (6)

Th_s substitution enables (6) to be put into integral form,

t

x(t) = #D(t-to) X(to)+ _ _D(t-T)<6F6(T)x(T)+[DD+6D6(T)]u(_)} d_

t
o
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To obtain x(t) explicitly, the method of successive approximations

is applied to the above expression, and yields

t

x(t) : _D(t-to)X(to ) + _ _D(t-V)DD u(T) dT

t
O

(7)

t T

t t
o o

¢[t ° , m) , and where o(6 2 )- and represents those terms thatfor t

contain 5 of second degree and higher.

Consider the initial conditions of the adaptive control system

and the reference model to be related as follows:

X(to ) - Y(to) : 6£5(to) (8)

Combining (7) and (8),

t

x(t) = _D(t-to)_6 (to)_{_D (t-to)Y(to)_ _D(t-T)DDU(') dT}

t
0

(9)
t

+6_ @D(t-T)[D6(T)u(T)+F6(T){_D(T-to)Y(to)+_ _D(T-C)DDU(a)dq}_v+o(6 2)

t t
o o

* 6
The method of successive approximations is a recursive procedure for

obtaining solutions to differential equations. If F6(t) , D6(t) , and

u(t) are continuous with respect to t on the interval [t o , m), then

this is sufficient to ensure that the recursive procedure converges to

the unique solution x(t) defined on [t o , =) The assumption of con-

tinuity is quite reasonable for physical systems and introduces no severe

limitations on the scope of the analysis.
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Referring to (4), it can be seen that the expressions in the braces

of (9) are equivalent to y(t) and y(r) , respectively.

tion results in a considerable simplification of (9):

This observa-

t

x(t) = fD(t-to) 6_6(to)+Y(t)+6 :_D(t-r)!D6(r)u(T)+F6(_)y(,r ) d_+o(62)

t
O

Finally, the expression for the performance error e(t)

substituting (i0) into (3),

is obtained by

t

e(t) = MT_l_t-to)6_ 5(to)+MT; _D(t-_)[16D6(T)u(_)+6F6(_)Y(_)_ dT+°(52)

t
O

This expression makes sense intuitively; that is, if 6F5 _ 0

6D 6 _ O for t :> to [Fs(t) - FD and Ds(t) _ D D for

6_6(t o) = 0 [x(t ) : y(t )] then (ii) indicates that
O O '

t b t
O

duced.

and

(i0)

t h t ] and if
O

(ii)

e(t) _- 0 for

These two assumptions have been made for the purpose of achieving mathe-

matical rigor in the derivation, and it might appear that they would

severely restrict the general applicability of the simplified adaption
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adaptive parameters.

_D(t) , u(t) , and y(t) are negligible compared with those of the

Assumption 2: The rates of change of the plant parameters, and of

and x(t ) _ y(t )
O O

Assumption i: 6 is sufficiently small so that the term 0(6 2 ) in (ii)

can be neglected; that is, F (t) E F D and D (t) - D D for all t ' t
S S O'

At this point in the derivation, two basic assumptions are intro-



technique. However, it is demonstrated in Ref. 5, by an extensive sta-

bility analysis and computer simulations, that Assumptions 1 and 2 may

be relaxed appreciably without impairing the performance of the adaptive

system. The example presented in Section V also serves to illustrate

this point.

Employing Assumption i, the closed-form expression for e(t) is

obtained from (ll) as

t

e(t)MT%(tto)6  Cto)+MT %CtT)[6F6C )y(T)+6D (T)UC )JdT(12)

t
o

The explicit functional dependence of the performance error e(t) on

the adaptive parameters (via 6F 6 and 6D 6) as given by (12) is the

expression that has been sought in order to derive the simplified adap-

tion technique.

Now, it is essential to have a measure of the change in the perform-

ance error produced by adjusting the adaptive parameters. The incremental

error, Ae(t) , is defined by

Ae(t) _ e(t + At) - e(t) , (131

where At is positive and is chosen sufficiently small so that, by

virtue of Assumption 2, any change Ae(t) is essentially due only to

the adjustment of the adaptive parameters. The adaptive parameters are

to be adjusted based upon the value of the performance error, that is,

if at some time, t 1 , the error e(t 1) is not zero, the adaptive par-

ameters will be adjusted so as to reduce the magnitude of the error for
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t > t I Therefore, in terms of the incremental error Ae(t I) _ the

design objective for the adaptive system can be expressed as follows:

where t i

Ae(t I) > 0 if e(t I) < 0

Ae(t I) < 0 if e(t I) > 0

Ae(t I) = 0 if e(t I) = 0

is in the interval It , oo)
O

(14)

Substituting (12) into (13), and rearranging terms in order to

isolate the effect of the adaption procedure upon the incremental error

_e(t I) :

Ae(t I) = h(t I) + AAe(t I) , (15)

where h(t I) contains those quantities that are not affected by adjust-

ing the adaptive parameters for t _ t I , and

n n q .

AAe(tl) - (At)22 -= a.zf'lj. .(tl)Yj(tl)+ amdmz (t l) u£ (t , (16)

_=l j=1 m=l _=i

in which f [ . (t) and
zJ

respectively, and a.
1

MTexp FDAt

The term AAe(t 1)

d' (t) are elements of 6F6(t) and 6D6(t)mZ

is an element of the n-dimensional vector

contains those quantities that can be affected

by adjustment of the adaptive parameters for t _ t I . Thus to obtain

the appropriate Ae(t I) by the adaption procedure it is only necessary

The several manipulations used to obtain (15) are quite involved; for

the details, see Ref. 5.
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to consider AAe(tl) Those elements of 5F6(t) and 6D6(t) which

do not contain any adaptive parameters are identically equal to zero.

Hence, the time derivatives of these elements are identically zero, and

they vanish in (16). The elements of 5F6(t) and 6D6(t) that do con-

tain the adaptive parameters will be denoted by fij(t) and dm_(t) ,

respectively. Only those terms in (16) corresponding to the f..(t)
z9

and dm_(t) can be affected by the adaption procedure.

The design objective for the adaptive system, as given by (14) is

expressed more concisely as

Ae(t 1) e(t I) g 0

Now, consider the following relation:

(17)

AAe(t 1) e(t I) < 0
(18)

Investigation of (16) reveals that (18) is satisfied if

fij(tl ) =-_F., ai yj(tl) e(tl) '
zj

dn_(t 1) = -_Dm Z am u_(t 1) e(t 1) ,

(19)

for the appropriate
i , j , m , and _ ; where the _F. and _D

zj m£

The elementsare positive constants• a are functions of At , whose
1

value is arbitrarily chosen. Hence
_F. and a. may be combined and

zj z

' Similarly, _ and a may
considered as a single constant _Fij m

It should be noted that the expressions in (19) are by no means the

only expressions that enable (18) to be satisfied.
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be combined as _m£ These new constants are referred to as "the

adaptive loop gains" and take the sign of either a. or
1

a By
m

choosing the _' and U_ to be sufficiently large, AAe(t 1) will
Fij m£

tend to dominate the right-hand side of (15), so that it is possible by

satisfying (18) to imply that (17) will be satisfied. Therefore, (19)

defines the adaption procedure to be applied at time t I in order that

the magnitude of the performance error for t > t I will be reduced.

The assumption that AAe(t I) dominates the right-hand side of (15)

is equivalent to assuming that any change in the performance error dur-

ing a small interval of time (At) is primarily caused by the adjust-

ment of the adaptive parameters (this was noted previously in conjunc-

tion with Assumption 2). It is possible to realize this condition by

making the adaptive loop gains suitably large. However, in general

!

there are bounds on the _F. and _' because of stability consider-
lj Dm£

ations. This matter is discussed in considerable detail in Ref. 5,

where it is also shown that the rates of convergence in the adaptive

system and the size of stability regions are affected by the adaptive

loop gains. The example presented in Section V illustrates some of

these points.

Since t I was chosen arbitrarily, it may be replaced in (19) by

t , where t ¢[t , _) Recalling that the rates of change of the
o

plant parameters are assumed negligible compared to those of the adapt-

ive parameters, (19) can be considered as defining the time derivatives

for those elements of 6F6(t) and 6D6(t) which contain the adptive

parameters. Hence, the result that has been sought is given as follows:
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Adaption Equations

where

fij(t) =-_.. yj(t) e(t) ,
13

dm_(t) =-_' u_(t) e(t) ,
Dm£

(20)

A A

= ai _F. and _Dm£ = am _Dm£_Fij lj

The adaption equations show that the adaptive parameters are adjusted

continuously at a rate proportional to the product of the instaneous

values of e(t) and the appropriate model state variable yj(t) or

input variable u_(t) The various yj(t) are readily available from

the actual mechanization of the model. The u_(t) are also available,

since they are the inputs to the system. The adaptive loop gains

(_F and _' ) are free to be chosen in order to satisfy the par-

ij Dm_

ticular requirements of each problem. The model-referenced adaptive

control system with the adaption mechanism that implements (20) is

illustrated in Fig. 2.

The adaption technique, based on (20), is extremely simple to

implement compared to the techniques developed in Refs. 3 and 4. For

practical applications, this feature is a distinct advantage and makes

the simplified adaption technique, which has been derived in this study,

very attractive for the synthesis of model-referenced adaptive control

systems.
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IV STABILITY ANALYSIS

In this section the results of an extensive stability analysis,

which is described in more detail in Ref. 5, will be discussed. The

stability investigation was undertaken in order to verify the theoretical

results that have been obtained and to demonstrate that the simplified

adaption technique is capable of providing satisfactory system perform-

ance over a wide range of operating conditions. The stability problem

in adaptive systems has received scant attention in the literature.

In order to obtain a mathematical description of the adaptive sys-

tem, Fig. 2, one must consider the interaction (coupling) between the

adaption mechanism which implements (20), and the adaptive control sys-

tem described by (i), with F (t) and D (t) defined in (5). The
s s

operation of the adaptive system is described by those elements of

6F6(t) and 6D6(t) containing the adaptive parameters and by x(t) ,

the state vector of the adaptive control system.

The elements of 6F6(t) and 6D6(t) which contain the adaptive

parameters are the fij(t) and dm£(t) . Assuming that there are k

adaptive parameters, define a k-dimensional vector p(t) containing

p(t) =A

these parameters as follows:

f..(t)
xa

dm£ (t)

(2Z)
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Instead of the state vector of the adaptive control system x(t) , one

can consider the difference between x(t) and y(t) , since the model

state vector y(t) is known. Define this difference by the n-dimen-

sional vector

_(t) A= x(t) - y(t) (22)

Hence_ the state of the adaptive system is defined by the

sional vector

_(t) _ (t)J

(k + n)-dimen-

(23)

The differential equation description of the adaptive system is ob-

tained in the following manner: Differentiating (21) with respect to

timej substituting (20), and noting that e(t) = MT_(t) _ yields

_(t) =

yj(t) MT_ (t)

u_(t) MTF_ (t)

= H(t) P_(t) , (24)

where H(t) is a k x n matrix. Differentiating (22) with respect to

time and substituting (i) _ (2), and (5),

P_(t) = 6Fs(t)y(t) + 5Ds(t)u(t ) + FD_(t ) + 5Fs(t)F_(t )

= B(t)p(t) + FDS(t) + _Fs(t)8(t ) ,

(25)
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where

zero or the appropriate yj(t) and u£(t)

If the r-th element of p(t) is

B(t) is an n x k matrix whose elements [bvw(t) ] are either

as defined below:

f. (t) ,
ij

b.lr(t) = yj(t) , and bvr(t) = 0 for v _ i

Similarly, if the s-th element of p(t)
is dm£ (t) ,

bms(t) = u£(t) , and bvs(t) = 0 for v _ m .

Combining (23) , (24) , and (25) ,

IB H(t)]
B= 8+

(t) F D J

= ,(t) _ + 1t(_) , (26)

where the explicit dependence of _ on t is understood, but has been

omitted as a matter of convenience. The adaptive system is governed by

the nonstationary, nonlinear differential equations described in (26),

where _($) contains the nonlinear terms.

From (26), _ = 0 implies that _(t) _ 0 ; the state _ = 0 is

referred to as an equilibrium state of (26). For _ = 0 it follows

that(a) the matrices of the adaptive control system [see (1) and (5)]

and the reference model [see (2)] are equal, i.e. 6F 6 = 0 and

6D 6 = 0 ; and (b) the states of the adaptive control system and the

reference model are equal, i.e. from (22) _ = 0 Ideally, _ = 0 is

the desired state of the adaptive system. However, as this problem has
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been formulated, the desired performance of the adaptive system corre-

sponds, not to the equilibrium state _ = 0 , but to e = 0 From (3)

and (22), _ = 0 implies that the performance error e = 0 ; but the

converse is not true. Therefore, an investigation of the stability

properties of the equilibrium state _ = 0 of (26) will provide infor-

mation pertaining to the performance of the adaptive system.

Before proceeding any further, it is necessary to define certain

stability concepts that are pertinent to this analysis. The stability

analysis in this section will consider perturbations at time t of the
o

adaptive system from its equilibrium state _ = 0 That is, the subse-

quent behavior of the adaptive system when it has been perturbed from

its equilibrium state at t will be investigated. This analysis con-
o

siders the case when the plant parameters take arbitrary constant values

for t _ t and are not time-varying functions.
o

It is assumed that the differential equations of (26) possess the

appropriate "smoothness" properties in order to guarantee that a solu-

tion to (26), with arbitrary initial conditions at t , exists and is
o

unique for all t _ t This solution is given formally by
o

_(t ; _o ' to) , where _o is the value of _ at time t Based ono

7
the work of Hahn, the following definitions are introduced:

Definition i: The equilibrium state _ = 0 of (26) is weakly stable if

for every number _i > 0 there exists a number _2 > 0 , depending (in

general) on _I and to ' such that II_olI < _2 implies

II _(t;[3o't)l] < [1 for all t > t o
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Definition 2: The equilibrium state _ = 0 of (26) is asymptotically

stable if

(a)

(b)

it is weakly stable, and

there exists a number _3 > 0 , depending (in general)

on to ' such that II _ol[ < _3 implies

lim _(t • S t) =0
' _o ' o

t -_ co

Definition 3" The equilibrium state _ = 0 of (26) is unstable if it is

not weakly stable.

For the purposes here, II "If represents the Euclidean norm.

An important general theorem can be proven (see Ref. 5) if the ma-

trices F D and M of the reference model (2) are in the following form:

F D =

0

©
0 1

^ ^

-fl -f2 -fn

M

0 1
!

° A
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It should be noted that for FD and M as given above, the model is

completely observable (the concept of observability was introduced by

Kalman8). The results of this theorem, which holds for arbitrary k and

n , are as follows: If (26) is stationary , then there exist values for

I

the adaptive loop gains (_F , _' ) such that _ = 0 of (26) is weakly
ij Dm#

stable. If (26) is quasi-stationary and k = l , then there exist values

for the adaptive loop gains such that _ = 0 of (26) is asymptotically

stable. For the case when (28) is stationary and _ = 0 is weakly stable,

it should be noted that there are equilibrium states other than _ = 0 ;

i.e., there are also nonzero states _ for which _(t) 0 . In general,

the equilibrium state that the adaptive system arrives at is a function _H

the initial conditions (see Ref. 5). However, (26) reveals that e : 0

at any of these equilibrium states (e = 0 corresponds to the desired

performance of the adaptive system).

V EXAMPLE

In order to illustrate the application of the simplified adaption

technique derived in Section III, a simple example is discussed. This

is a 1-dimensional system with its block diagram shown in Fig. 3. The

differential equation that describes the plant and its adaptive control-

ler is given by

i(t) = F (t)x(t) + D (t)u(t) = [-cr(t)-f(t)]x(t) + u(t) ,
s s

(27)

The term stationary means that _(t) is constant for all t _ t ,
o

which implies that u(t) and y(t) are constant for all t 2 t
o

The term quasi-stationary means that _(t) approaches a constant,

steady state value as t _ _ , which implies that u(t) and y(t)

approach constant, steady state values as t _
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where

f(t) = plant parameter,

_(t) = adaptive parameter.

Consider the reference model described by the following differential

equation:

where

put s

^

_(t) = FDY(t) + DDu(t) = -f y(t) + u(t) ,
(28)

f > 0 , which implies that x(t) is bounded for bounded in-

u(t). The transfer function of the model is given by

Y(s) 1

v(s---Y=
s + f

The state variables x(t) and y(t) correspond to the outputs of the

control system and the reference model, respectively. Thus, the per-

formance error is

e(t) = x(t) - y(t)

Rewriting (27) in a form that is analogous to (6),

^

_(t) = [-f + f(t)] x(t) + u(t) ,

where

f(t) = -_(t) -- f(t) + f .

(29)

Differentiating f(t) with respect to time, and assuming that

7(t) _ 0 (since by Assumption 2 the rate of change of the plant param-

eter is assumed negligible compared to that of the adaptive parameter),
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f(t) = -_(t) . (30)

From the adaption equations (20), the above equation yields

@(t) = _ y(t) e(t) , (31)

where _F is the adaptive loop gain. This is the adaption equation to

be implemented by the adaption mechanism in Fig. 3. Since _F a_F
^

v

and a = exp (-fAt) > 0 , it follows that aF is a positive constant.

The manner in which the proper value for the adaptive loop gain is

chosen is discussed below.

From (23), the operation of the adaptive system is described by the

2-dimensional state vector

_(t)

Combining (26), (30), and (31),

= ii(t)l.
(t)J

where _ > 0

E°:I E°]= _ + , (32)
^

(t) e

In the design of adaptive control systems, it is essential to de-

termine the extent of the stability regions. That is, one must find the

size of perturbations for which the state _ = 0 is weakly or asymptotic-

ally stable. Application of Lyapunov's second (or direct) method 9'I0

enables one to estimate the size of these stability regions. This ap-

proach has found wide applicability in the stability analysis of
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differential equations; it attempts to draw conclusions concerning the

stability behavior of an equilibrium state without having knowledgeof

the solutions to the differential equations. This feature makesthe ap-

proach powerful since it is not possible, in general, to evaluate expli-

itly the solutions to differential equations.

In the stability analysis of this example, it is assumedthat the

plant parameter f takes arbitrary constant values and is not a time-

varying function. Exampleswith time-varying plant parameters are in-

vestigated by computer simulations in Ref. 5.

Consider the following quadratic Lyapunov function having no ex-

plicit time dependence:

V(_) = _ e 2 + f2

Differentiating (331 with respect to time and substituting (32),

(33)

V(B) = dd_ = grad V._ I

I along (32)
solution

of (32)

= -2_ e2(f - f) (34)

^

Therefore, f < f implies V(_) g 0 . From (33) and (341 it can be

shown that V(_) _ 0 in the region bounded by the ellipse V(_)= _2

It follows (from a theorem presented in Ref. 9) that 8 = 0 of (26) is

weakly stable in the region bounded by V(_)= _2 That is, all motions
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originating in this region will remain in it indefinitely. This result

holds for arbitrary y(t) and all _ > 0

For the case when y(t) is a periodic function and not identically

zero, it is possible to demonstrate asymptotic stability using the

Lyapunov function of (33). In the stability region bounded by

V(_) = _2 V(_) = 0 corresponds to e = 0 as shown by (34) For

e = 0 and f _ 0 , it follows from (32) that _(t) _ 0 and, in partic-

ular, _ $ 0 for some time t'¢_t _ _) since y(t) _ 0 . It can be
o

shown (using a theorem presented in Ref. 10) that _ = 0 of (26) is

asymptotically stable in the region bounded by V(_) = _2 That is, all

motions originating in this region decay to (f = 0 , e = 0) _ if y(t)

is a periodic function of time.

^

In the stability region, Ill < f and from (29) it follows that the

feedback coefficient of the adaptive control system may be perturbed by

nearly i100% from the corresponding desired coefficient (f) of the model.

f

In addition, e may be perturbed by an arbitrarily large amount if aF

is chosen suitably small. It should he noted that the region bounded by

V(_)= _2 is an estimate to the region of stability.

If y(t) is a constant (y _ 0) , which is a trivial kind of

periodic function, the result proven above still holds. However, in

this case one can establish the actual region of asymptotic stability

by a graphical technique known as the method of isoclines (for the de-

tails see Ref. 5). In Figs. 4 and 5, the state space portraits in the

f , e plane (trajectories corresponding to various initial conditions)

^

have been constructed for y = .1 and f = 2 with _ = 50 and 400 ,
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respectively. The arrows that are affixed to the trajectories indicate

the direction of motion for increasing time, and t appears only

implicitly as a parameter that changesvalue along each trajectory. The

dashed line in each figure is referred to as the separatrix: for

t

_F _ 0 all motions starting below the separatrix decay to the origin

(_ = 0)_ and all motions starting above the separatrix grow undoundedly,

as shown in Figs. 4 and 5. Thus, the state _ = 0 of (26) is asymptoti-

cally stable in the region below the separatrix.

Investigation of the figures reveals that the size of the region

of asymptotic stability increases for decreasing values of _ How-

ever, (31) indicates that by decreasing _F'' the rate of adjustment of

the adaptive parameter _(t) is decreased_ which implies that the rate

of convergence of the adaptive system is slower. Thus_ a compromise

between the size of the region of asymptotic stability and the rate of

convergence of the adaptive system to _ = 0 must be arrived at in

choosing _

It can be shown that the lower asymptote of the separatrix (for

^

all f , _ > O) is the line -e = y

motion having the initial conditions e
O

decay to the equilibrium state _ = 0

may be perturbed from its desired value,

greater (algebraically) with f

Hence from Figs. 4 and 5, any

> -y and f arbitrary will
O

That is, x (where e = x - y)

y , by an amount -100% or

assuming any value. Additionally, x

may deviate from y by less (algebraically) than

ficiently negative. As shown in Figs. 4 and 5, f

-100% for f suf-

may be perturbed

to, respectively.
e and f are the values for e and f at

O O
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by an arbitrarily large amount. For f > f , (27) and (29) show that
O

F is positive a_ time t , which implies that the adaptive control
S O

system is initially unstable (where initially unstable means that the

motions would be unbounded if F were to remain positive).
S

This example demonstrates that Assumption 1 need not be satisfied

in order for the simplified adaption technique to perform satisfactorily

and, indeed, the adaptive control system may even be initially unstable,

yet achieve asymptotically stable behavior after adaption. As pointed

out by Fraser II, the restriction that the adaptive control system not

be initially unstable has limited the applicability of many adaptive

techniques that have appeared in the literature.

The stability region obtained by employing the Lyapunov function

of (33) applies for arbitrary y(t) [or arbitrary u(t)] In par-

ticular, it is not necessary for the rste of change of y(t) to be

negligible compared to that of the adaptive parameter _(t) In ad-

dition, f is an arbitrary positive constant which implies that

_D (t) = exp (-} t) has a rate of change that is not necessarily

negligible compared to that of _(t) Hence, the simplified adaption

technique will operate satisfactorily despite the violation of Assump-

tion 2.
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VI CONCLUSION

An adaption technique for the synthesis of model-referenced

adaptive control systems has been derived analytically. A somewhat

more direct approach to the problem was taken, employing state space

methods. It was shown that the adaption equations (20) are extremely

simple to implement, which is a definite advantage for practical appli-

5
cations. The results of an extensive stability analysis were discus-

sed in order to evaluate the performance of model-referenced adaptive

control systems utilizing the simplified adaption technique.

For the purpose of illustrating certain important aspects of this

study, a simple example was discussed. This example demonstrated that

the rate of convergence of the adaptive system and the size of the

stability region are dependent upon the adaptive loop gain. In addi-

tion, it was shown that the adaptive control system may even be ini-

tially unstable_ yet achieve asymptotically stable behavior after

adaption.
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MEMORANDUM 6

ADAPTIVE CONTROL AND THE COMBINED

OPTIMIZATION PROBLEM

[ I NT[tOt)IICTI ON

This memorandum places the design of adaptive control systems _n a

firm theoretical base by formulating tile adaptive control problem ill

terms of a combined optimization problem. This formulation, presented

in 5ec. II, consists of considering uncertainty in tile structural param-

eLers of a linear plant by augmenting the state vect_or, thus converting

tile identification problem into an estimation problem.

Estimation, described in Sec. II[, is performed by linearization

about the t_stirnaLe of the present and next state, arid use of linear esti-

mation theory to update the prediction when the next measurement occurs.

If tile system is initially at rest arid if there is rio measurement noise,

this procedure is optimal because no multiplication of random variables

o c c tJ r s.

Control, considered in Sec. IV, consists of using the contr,,1 that

would be optimal if the present estimate of the present and fut_lre values

of the plant parameters were exact. Both low sensitivity (no identifica-

tion) and analysis-synthesis systems are considered. The major effect of

parameter uncertainty is equivalent to an additional term in the loss

function of tile performance index.

II PBOBLEM FORMULATION

In this section the linear adaptive control problem is defined and

shown to be a special case of the combined optimization problem. This

latter problem has been the subject of considerable theoretical study *1'2

by SBI under a contract with the NASA Ames Research Center; this problem

provides the theoretical basis for the development to be taken up in the

remainder of the memorandum.

* [leferences are listed at tile end c,f the memorandum.
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A. STATEMENT OF THE LINEAR ADAPTIVE CONTROL PROBLEM

Consider Fig. 1 with the plant linear, and the disturbance d_ and

the noise v_ white Gaussian. If the performance index is quadratic and

if the system parameters are known exactly, then the optimum controller

is linear and may be found by application of well-known procedures. 1'2

l°k
vk

Uk _ Yk

PLANT
z k

CONTROLLER

TA-557@-5

FIG. 1 LINEAR ADAPTIVE CONTROL PROBLEM

However, in many situations the parameters are not known exactly and

change in a random manner due to environmental effects. In other situ-

ations the plant may actually be nonlinear; thus the linearization param-

eters change as the operating point shifts. It would be desirable to

find optimum or near optimum controllers for these situations. This

problem in essence is the linear adaptive control problem.

Stated mathematically, the problem is:

Linear Adaptive Control Problem

Given

(1) The input/output relation*

Yk = alkYk-I _ • • • ankYk-n + blkUk- 1 + "" " bnkak- n

+ dk_ I + c2kdk_ 2 + ... Cnkdk_n (i)

This is the most general input/output relation for a nth order system with one control input, one dis-

turbance input, and one output, For multiple-input systems, more terms appear on the right-hand side;

for multiple outputs, there will be more than one equation.
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W h e F e

(2)

whet( _

Yk is the scalar output

tzi is the scalar control input

d k is the scalar disturbance input, white in time, and

a ik ' _) ik ' c ik are parameters; Ctk known.

The parameter equations:

Uj)k+ 1 =

=
aik

[gt@ k + T_k

a° + arkqbktk --_.

T
bik : b_k + _ik%

if% is the parameter state vector

"Tlk is the parameter disturbance noise, white in time

F4_, is a known matrix

-_i k ' lJik are knowil vecLors

a°k, b°_ are the nominal values of all ' and bt_.

(3) The measurement equation

(4)

Zk = Yk + vk

z k is the scalar measurement

v k is the scalar measurement noise, white in time.

The statistics

A

^ A p_ -t )(Yl-_ .... Yo ) "" N(Yt-_/-t .... Yo/-t' /

d k _ N(O,_k)

Cpo _ N(CPo/_l,t_o/_ l)

_ _ N(O,Q_)
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where

where

A

x _ N(_,P) means x is normally distributed with mean
A

and covariance P.

(5) The performance index*

N

2 + rku 2 ) (5)d = 2 (qkYk k
k=0

qk and r k are given scalars.

Find: The controller which determines u k as a function of

Z_ _ (z 0 ..... z_) for each k in such a manner as to minimize E(J).

Note that tile assumption that the cik are known implies that the

statistics of random effects on the system are known. Only uncertainty

in the structure of the system is considered in this memorandum.

B. STATEMENT OF THE COMBINED OPTIMIZATION PROBLEM

At this point the combined optimization problem and its solution in

terms of iterative equations is stated in preparation for a demonstration

that the linear adaptive control problem is a special case. The combined

optimization problem is illustrated in Fig. 2.

Combined Optimization Problem

Given

(1) A plant, described by

where

xk+ 1 = f(xk,uk,wk,k)

x k is the state vector

u k is the control or input vector

w k is the disturbance vector, assumed to be white.

(6)

More general quadratic cost [unctions involving up to the last n - I outputs st a given time may be

treated with little increase in complexity.
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PLANT
xk

_._MEASUREMENTSYSTEM

zk

CONTROLLER

TA-5578-6

FIG. 2 COMBINED ESTIMATION PROBLEM

2) A measurement system, described by

w[iere

z k = h(xk,vk,k

z k is the measurement vector

z, k is tile measurement noise vector assumed to be white.

3) The probability distributions

(7)

(a) p(x o )

(b) p(w i ) i = 0 ..... N

(c) p(vi)

4) The performance index

i = 0 ..... N (8)

NJ = E Z
=0 l(x i , u i i)}

5) The admissibility constraint

(9)

u i • .(2.l
(10)
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Find tile admissible controller that minimizes J, where

(1) A controller is defined as any algorithm that at time

k generates u_ as a function of the present and all

past measurements (zk,...,zo).

(2) An admissible controller is defined as any controller

which, when used in tile closed-loop system shown in

Fig. 2, yields admissible u_.

[t ca, be shown that the optimum controller can be broken into two

parts: an estimator, which calculates the condition probability density

= p(xj,/Zk,U__l), and a control law u k : uk(f_k). 1'2 The estimator is

governed by the equation

P(Xk +t, Zk +1, tl_ )

P(Zk+l/x_+l)f P(Xk+l/xk,uk)p(xk"Zk,Uk_l)dx k
x k

f p (zk+l,/xk+ 1 )f P (xk+l/xk, uk)p(x_,'Z k , Uk_l)dxkdxk+ 1
xk+ 1 x k

P(Xo"Zo,U_ 1)

k > 0

p( 'Zo, Xo)p(xo)
= (11)

,f p(z o/Xo)P(X o)dx
x 0

and the control law is found by solution of

(L {I*I ' ]0
+ "_(f_k,Uk,Z_+l) k + 1I*([°k,k) = min (_k,uk,k) E÷t

u k

I*(_c_,N) = min L(7=N,uu,N)

uN

k < )V

(12)

where

I * ([ _, k )
&

u k ' " " " ' u N k t

L(_U i, u i, i) zx E [l(xi,ui, i),.l[°i]

x i

= E [l(xi,ui,i),/ZiUi_l] (13)
x i

and [ik is defined by Eq. (11).
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C. [;OBMUI. ATION OF THE LINEAR ADAPTIVE CONTROL PROBLEM

AS A COMBINED OPTIMIZATION PROBLEM

To show that tile linear adaptive control problem is a combined

optimization problem, it is sufficient to make the following definitions:

x k

*q

Yk
m

u k

_t

d k

_k

w k

. .

0

0

0

0

0

d k

• r_ k,

14)

where •

0l"k-n -1

gk-I

for any scalar time function _zk

The state equation, measurement equation and performance functxon

may now be written in terms of these two vectors and the scalars u k and v k

previously defined, by use of obvious identities and Eqs. (1), (2), and (3).

Tire results are cumbersome (although simple) and unedifying and hence are

not reproduced here, but are given in Appendix A. It is only necessary

to note that the linear adaptive situation may be described in terms of

equations of tile form (6), (7), and (9), if the definitions of state and

disturbance noise given in (14) are used.

Two comments are in order at this point:

(1) Tile dynamic behavior of the system is described by the
dynamic state vector
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1)
x k

&

Yk

Yk

u k
I

#

_dk

(15)

(2)

of dimension 3n - 2. This vector has almost three times
the minimum number of n dimensions that are needed to

describe tile behavior of an nth order dynamic system.
Tile additional dimensions are necessary to facilitate
ident i float ion.

The unknown parameters of the system are handled by

augmenting the dynamic state vector with tile vector _k"

I I I ESTIMATION

In this section, approximate solution of the estimation equation (11)

is considered. The development is based upon application of perturbation

theory and linear estimation theory.

Battin 3 and Schmidt 4 were the first workers to apply linear estima-

tion theory, to nonlinear estimation by linearization of the system equa-

tions about the present estimate. They considered application to satellite

tracking. Farison 5 and Kopp and Orford 6 considered the use of such lin-

earized estimators in the identification or analysis half of analysis-

synthesis systems. The present work is based upon some of the ideas

developed by Lee in Chapter 4 of his research monograph. 7 Such techniques

have also been applied by SRI successfully to (enemy) missile tracking

problems, including identification of unknown ballistic coefficients. 8

A. TIlE "EXTENDED KAI, MAN FII, TEtt"

In this paragraph the theory of the so called "extended Kalmar,

filter," is presented. As a first step the state space formulation of

linear estimation developed by Kalman 9 and commonly referred to as the

Kalman filter is briefly described. Consider a system with state equation

xk+l = Fkxi + w k " (16)

and measurement equation

zi = H2xk + vk , (17)
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where w k and v_ are uncorrelated white, Gaussian random processes with
A A

mean zero and covariances Ok and R k respectively. If tile a priori dis-

tribution of x 0 is Gaussian, then all conditional distributions of x k

given Z_ will be Gaussian and it is sufficient to find equations co up-

(late the mean and variance. This can be accomplished, among other methods,

by use of tile estimation equation (11) (see Fief. 2 for details).

"File resulting equations may be broken into two sets:

(1) The prediction equations

A
Xk+l/k k k

A A

(2) Tile regression equations

and (18)

A

Xk+l/k+l

A A T A A -1 T A
xk+lfk + Pk+ltkftk+l(Hk+lPk+lHk+l + Rk+l) (5+1 - Hk+lx_+l/k)

where

A

Pk+l/k+l

A A A A A
T

: P_+l/k - P_+l/kHk+l(H_+lP_+lHk+l + Bk+t)Hr+lPk+l/k (19)

A

X i

5

j : E(xi/Z.i )

A

P_ A A ]
i : E[(xi - xi/j)(xi - xi/j)r/Zj

Now consider the state and measurement equations*

xk+ 1 = f(xk,uk,k) + w k

z_ = h(xk,k) + v k 20)

These equations need not be linear in _k and v k but for simplicity only this case is treated; the
extension is trivial.
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A

Prediction is investigated first. Linearization of f about x k k yields

A A
x_+ 1 _ f(Axk/k,uk,k) + f,(xk/i,%,k)(x k - xk/k) + w k (21)

where the gradient g,(x) of a vector function g(x) is the matrix defined by

g(i)(j) A "C)g Ci) (22)
_x(J )

with the superscripts denoting components.

Letting

x
k+l = xk+ I f (Ax _ ^k/_,,uk,k) and x k = x k - xk/k

Eq. (20) takes the form of 15); therefore

4
Xk+ltk

A

= f,(Ax_ k uk'te)'xk k = 0

A

Pk+t k -= f,(xAk

A
_,uk,k)P_, kfr(Axk

A

k'uk 'k) + Qk

or

A

"_k+l k f(_k/k,%,k)

A A
A

-_ f,_(Axk/k,uk,k)P_/kfr(x k k,uk,k) + Q_ (23)

These are the approximate prediction equations.

A

Now cons der regression; if (20) is linearized about Xk+l/k then

zk+ 1 _ h(:x_ (x k+l/k,k + 1)+h A +l/k,k+ 1)(xk+ 1 - Xk+l/_) + vk+ 1 ,(24)

Letting

_ (A
zk+ 1 = Zk+ 1 - h k+l/k,k + 1)

(24) takes the form of (17); hence

6"10



:('k + J k+] ' + hT(h /kh T + Bk )-1._ _ , l / k I)k + l / k xl)k + l • +l

!z_+] h(_"k+l,/k, k + 1)3

[, ,

h r + B_ )-lAp k/)k+l'k t)k+i/khT(h_Pk+l k • +1 +1 ,'k

(25)

A

_h('['( + the' a['gttln(!nL of h (xk+t,+, k + l) has been suppr(+ss(!(i for simpii('ity.

'lh(._(' av(. th(' api, v()xiluate cegres_iorl oqll_tLiolls.

Th(' {'._s,'r,,{' {}f the' ('xt{',_{t{_d Kal,Jal_ filter is t,r('s{'t, tpd in I"itz. 3.

II_ _(,vds, ttl(' filt*.r {}p(.ratt. s hasitallx as f(}llo_s: t"ro.I the present

esLi_,at_', the nonl inear state and measurement_ equat_ions ace used Lo pre-

di('t the u('xt, measurernent_ under the assumption of zero noise and distur-

bah(_'. "['hi_ predict ion is compared witch the act_ua[ measurement_ and the

u k

DELAY _ xk
f(.)

PLANT

1 I 7-1

' h(')
I

I l
I I I
I I
I I I
I I I
I I I
J [ MEASUREMENT SYSTEM ]

I

I
I
[ ESTIMATOR

DELAY

f(°)

A

Xk/k-I

+

I Zk/k-I

I
+ I

) ,
I
I

I

I

I
I

_.1

FIG. 3 EXTENDED KALMAN FILTER
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estimate corrected by a linear fuuction of their difference. Linear esti-

mation theory and appropriate linearization are used to determine this

linear function. Viewed in this light the extended Kalman Filter is an

eminently reasonable method of estimation.

B. USE OF TIlE "EXTENDED KALMAN FILTEB 'j FOR |DENTIEICATION

Ttle equations given in AppendixA describing the linear adaptive control

problem have the form of (20) with the simplification that the measurement equa-

tionis linear. Henceby calculating the gradient f_ and substituting directly

into (24) and (25) we can derive the equations that simultaneously esti-

mate the dynamic state of the plant and identify its parameters. The

details of such a derivation are presented in Appendix B, the results

are:

Prediction Equations

AD _DAD + G_u kXk+l/k = l"kXk/k

A A

A A DT A, A
= F°P° Fk + Q_ + QkP_+llk k _Ik

1/k --k--_lk
(26)

where

(27)
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0 0

0 ... 0 1 0 ... 0

0

0 0

0 0

,M

p tJ

tra_:._it ion m.t _ x l'_>r the plant if ,_ "

di_! ribi]l i{_N ittll rix for the' plant i i _ _ _

covarian(:_ • of x 1_ given Z
L )

(,th,,r qua]:tici,'_ at(' (i(,t'ined in Appendix B.

fCegr,',x_on Equatiorz_

WlI(' l't "

A D

Xk+l _*1

?

p; I)
-k+l k+l

pyy
L / J

Dy
P i / j

,ny
Pt/.i

A -1x +l,'k + Pk+l/'k _ + rk) (Zk+l

:k+l k'r k+l/'k

A -1
+ rk) (=k+:

A A 1 _3 D y T
t/'k +1 k([k'_l k k+l/k

p;D
k +1 ,,k i , I,,DyT

A
A_y

+ r_)- ]f_

A

A

- Y_+I _)

is Lhe var ante of y_ given Z J

is t>he covariance between x D and y given Z

is uhe covariance between @i and yt given Z s.

(28)
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I:igur_' ,L is a die, gram o[' an adaptive control system using the ex-

tended Ralman ['i lter. Not e Lliat the present estimate of the parameter state

is used to update the plant model and to vary the control law. Derivation

of the control law is treated in the next section. The gains K 1 and K 2

are determined by solution of the variance equations. Equation (26c)

implies that the effect of the parameter uncertainty on estimation of the

D *
dynamic state xk+ 1 is equivalent to a random disturbance with covariance Ok'

I

h

_k/k

uk

CONTROL t

,,._,G"

LAW -,_

^D

Xk/k

%

A

_k/k __ DELAY

A

Ck/k-I

AYk/k --<

(E)-

A

_k-I/k-I

ADAPTIVE CONTROLLER

FIG. 4 ADAPTIVE CONTROL SYSTEM

TA-5578-

Can the use of the extended Kalman filter w}liC}l is heuristically

valid be ,justified theoretically? One approach ix to solve (ll) approxi-

mately and compare the results with tile extended Ratman filter. Bucy 1°

has done this for the continuous time analog of (11) which is a

6-14



gc.cr, liz_,d Fokkev-Planck equation. Ills results contain terms that av_'

not pvl*_ont in lhc continu.us version of the extended I_alman filter

(_hich m_l\, b_' obtainpd by li.lit, ing arguments from the results of lho

pt'oviou.s par'agraph). .";i,tilar results have also been obtained for the

discvpt,' time case ill unpublished work by the author. Thus, to jnstifv

the use oF the' extended Kalrnan filter for identification, one must shiny

th.t these .ddition.l terms are negligible in this case.

The procedure just mentioned gives as an estimate of the present stale

an approximation of themost probable present state. Alternatively, one may

seek as an estimate the most recent state on the most probable trajectory.

In the linear case these two estimates are equal, but in general they will

not bethe same. Theproblem of finding the most likely trajectory may be

converted to a nonlinear control problem and treated by dynamic programming.

Unpublished work by Luenberger and a paper by Detchmendy and Sridhar _" in-

dicate that an approximate solution to this problem is similar to the

extended lx_tllnan f'ilter but again with extra terms, ftmvever, these terms

dis_tl, pt'.r it, the identification problem presented here; hence, to .justif'\

lho t,xtend_!d kalman filter on this basis requires justification of using

th,' ,u,,st probable tt'ajectory rather than most probable present state ['or

cst imat ion.

lhlther tha. following either of tile above approaches to justification

of' tht' oxtonded k_tlman filter, a third approach is taken herein. Special

cas.s _r'_: found in which the extended Kalman filter equations are exact,

then it is assumed that for situations closely approximating these cases

the equations are good approximations. Two such cases are considered in

the next two paragraphs.

C. LITTLE UNCEBTAINTY ABOUT PARAMETERS

One obvious case where the linearized equations are exact is tile

cast where the parameters are known exactly; hence one can expect that

the extended Kalman filter would work well when the amount of uncertainty

about t}l(" s_'stern iS saa 11 ;

The final term of the regression Eq. (28b) for updating the estimate

_ multiplicative factor Whenof the parameter state contains Pk+i/k as a

the parameters are well known, this covariance is small and the estimate

of the parameters is essentially the a priori estimate; hence, it is

reasonable to consider not updating the parameter estimates. If this is
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done (i.e., identification is not performed and estimation of the dynamic

state is based upon the a priori estimate of tile structure) then the esti-

mator still obeys the equations given in Part B above, except that

_k+l/k+l = _k+I/k

k+l/k+l --k+l/k

Q+ Al/k+l = P_+l/k (29)

This observation, which is true ally' time the extended Kalman filter carl

be justified, _ill prove of great use in the analysis of passive adaptive

systems.

D. LITTLE MEASUREMENT NOISE

A second major case in _hich the extended Kalman filter is exact

is when the measurement noise is zero and the system is known to be in-

itially at rest. In this case Yk and y_ are known exactly initially and

can be measured exactly for all future time. Suppose that p(x_/Z k) is

Gaussian. Since Yk and Yk are known, the linearization of Eq. (21) is

exact; therefore the prediction Eq. (23) is exact and p(xk+l,/Z_) is

Gaussian. Since the measurement equation is linear, the regression equa-

tions are exact and p(xk+a/Zk+l) is Gaussiai,. B) induction, the extended

Kalman filter is thus exact when r k O.

IV CONTROL AND PERFORMANCE

The subject of this section is the approximate solution of the con-

trol equation (12) by application of linear optimal control theory. The

results from this solution are twofold: a determination of the control

law and a calculation of the performance. This development of this section

is similar to that of Farison. 5 It is assumed for this section that the

measurement noise is zero.

A. PASSlVE ADAPTIVE SYSTEMS

Suppose that, in Fig. 4, the gain K2 is set equal to zero. In this

case no identification is performed and the a priori estimate of the

system parameters is used in designing the estimator and determining the

control law. Such a system can be called a passive adaptive system--
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passive because no active adaption procedures are used and adaptive be-

cause nor'real feedback provides some insensitivity to parameter variations.

In Sec. I11-[3 it was pointed out that the effect of parameter un-

, on the plant was equivalent to a disturbance noise with co-cel'tai[lt_,,,_,

variance (-)2" For Ar k = O, i.e. , no measurement noise ,

A, A
Ok = F°4_PCF_¢_k k (30

In Appendix B it is shown that

FD'_

0

D
TM_' + u k n

T
Xk -k

0

0

(31

where _{Ik and n i are given in that appendix. Therefore,

A

Qk

Ay
0 ... 0 qk

0

0

0

0 ... 0 0 ... 0

(32

whe Fe

D T T A' T A
T A D 2xl_ ¢l,lk p;nk uk uk+ + u k 12k 'l_kn k

T * T *

D D D + 2XDk D *= Xk Qk Xk S_k Llk + td'krkU"k

Note that since,P; can, be calculated a priori (since no identificat

o and r can be determined a priori.takes place) QD _k k
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A_
Even though Qi is a function of tile dynamic state and control, it

is of such a form that linear theory carl still be applied. Tile develop-

ment begins with the assumption that

Aorn _ + b_ (34)l(l>k,k ) = x k rkx k

Substitution of (26), (32), and (34) into control equation (12) yields

D T D

+ bk 1),'Zk)lk([;_,k) : rain E((y_q k + u_r k + xk+iPk+Ixk+ I +
uk

2 + U?rke :vDAD + G_UkR T DA D= min [y_q_ + trkxk/k ) Pk+l(F_x_/k + Gkuk)
u k

r *

y D :d) 9 D D * 2+ pk+l(xkTtdk*xk + .x k s_4 u k + rku )

A T A

tr [Pk +1 D D+ (F_Pk/kF k + Qk)] + bk+ t] (35)

where Pk+ly is component of Pk+l corresponding to y2k.

Note that this recursion equation is the same as would be obtained

if the a priori estimate of the plant were exact, but the performance

index were

N

, 9T_D ' D + 2x 0r 0' ,u2
J : E 2 (x k Vk xk k Lk uk + r k ) , (36)

k=0

where

. • • 0

0

qk

0

0 0

0 ... 0 0 ... (

0 0

0 0
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D _
_-k P_+I sDk

r k r k + pYk+lrk

]'h_' pr'iTlwd quantities cannot, tie calculated be. fore t.he minimization; how-

D i D _ whell_'vvr, Pf*l will be available in Lime Lo comput, e 0f , )'k ' and _r k

the,', al_' n_'e<tvd.

'l'hc l_linirnizaLion of (3S) can be carried out by complet, ion of squares;

lb, t. 2 i-onl, ains the det, ails. The resutt, s are

Wilt' I't'

alld

r,DAD
u_ = -t_kx k , (37)

= _ D T -1 e
,l) (r" + (;k Pk 1 GD) ::'DTD .D D Th_ _ + _"k "k+IFk + Lk )

I

:'k - (2/: + _'_ f't , l : k - "- k - k +

L T A
,D

t,' [-t'k.1 /"_Pk k/'_ + Qk I + l,k+I (38)

Perf,_rri, ance is given by

j : E[1(F'o,O)l

who I'0

[,,
'g D

ADT iPox ÷ t (PoQ_x 0 ,/- 0 / - 1 r 1

_: k t-

N-1

+ 2 A,_k
k=O

(39)

* _ "D T ,I) D

The tic:tails of this derivation are also in ttef. 2.
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It is important to note that in performing the calculations of this

section that (29) must be used in tile updating of PC. These computations

13
result in tile optimal control law for" a minimum sensitivity design.

B. ANALYSIS-SYNTHESIS ADAPTIVE CONTROL SYSTEMS

If K 2 in Fig. 4 is not set equal to zero, then the filter identifies

the system parameters. Such a system is called an analysis-synthesis

system; analysis refers to the process of identifying the system parameters

and synthesis to the process of determining the control law and plant model

on tile basis of these parameters.

The situation in this case is more complicated than for the passive

adaptive system because the estimate of the system parameters is not made
A

a priori. This implies among other things that P_ cannot be calculated

a priori; hence, linear analysis will not provide the optimum control law.

One reasonable approximation in calculation of the control at time k is to

assume that tile estimate of @k at time k is exact and that Ni is zero for
^¢

i > k and to ignore the effect of u k on Pk' Under these assumptions the

linear theory of the previous section may be applied, and the equations

given there hold, except that (26) is used for updating Py rather than (29).

To realize such a system it is necessary either to compute K_ for each

D for the esti-possible _k a priori arid store the results or to compute K k

mated _k in real time. An approximate computation of performance can be

made by use of the nominal values of the parameters. The major difference

between analysis-synthesis and passive-adaptive systems is that, for the

former, the additional cost terms in the performance index are less because

.is less since (26) rather than (29) holds

In two special cases, the procedure outlined above is optimal. If _k

is known exactly initially and _k is zero, then the procedure is obviously

optimal. If @0 is known and if ©k changes slowly, then the identifier

should be able to follow _k very closely and the above procedure should be

close to optimal. If F t _ 0 then the variation of parameters is random

and no identification is possible; hence the above procedure is again

optimal. 14 Thus for very rapid changes in parameters the approximation

should be very good.
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C. MODEl. REFERENCE _YNTtlESIS

In general, Kf is a complicated function of _k; hence, realization

_1 the synthesis procedure given above may be complicated. Art alternate

method is to calculate Kf using tile nominal values of the system param-

et. ers; from this, the optimum closed-loop system can be determined.

Synthesis c(_nsist, s of picking K_ so that the closed-loop system matches

this system for the estimated values of the parameters. For this syn-

.D
th_sis procedure, _, is a simple linear function of ©k"

In general, the difference between the two methods of synthesis de-

pends upon the cost of control. If the control cost is low they are very

similar; if it. is high they differ considerably. Figure 5 is a graph of

• D

Kj, as a funcl, ion of _;k for t. he scalar system with no disturbance or noise:

/? ' D
k + 1 = @k x k + uk

N

J = Z x D2 2 (40)
k + uk

L=D

D
K k

!

2

MOOEL.EFERENCE

" _ a1 ¢k
2

TA--5578-9

FIG. 5 TWO METHODS OF SYNTHESIS
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V. CONCLUSIONS

The development presented in this memorandum was based on three

assumptions:

(1)

(2)

(3)

The problem would be a linear problem if the parameters

were known (i.e., linear equations, Gaussian random

processes, quadratic costs, no constraints.)

The disturbance statistics are known

Tile measurement noise is small.

The first of these assumptions is most important to the development,

since nonlinear problems are very hard to handle in general even without

the difficulties introduced by parameter uncertainty. Fortunately many

important problems satisfy this linearization assumption. Nonquadratic

cost and/or constraints on the control will not affect the estimation

procedures but will complicate the control.

With these assumptions, the following results may be obtained:

(1) The adaptive control problem is a combined optimization

problem, in general nonlinear. Adaptive control can be

viewed as an approximation to solving this combined

optimization problem, whose solution is generally incom-

putable. (This conclusion does not depend upon the

above assumptions.)

(2) The simplest approximation consists of designing the

system to have low sensitivity to the parameter vari-

ations. Estimation in this case is the Kalman filter,

which consists of the a priori model of ttle plant with

the state being updated by a linear function of the

difference between the predicted and actual measurements.

(3) If the low sensitivity design has inadequate performance,

then a betteP approxiination to combined optimization is

an analysis-synthesis system in which the plant parameters

are identified on the basis of the available measurements.

The extended Kalman filter" is a good approximate tech-

nique of estimating the dynamic state of the system and

identifying its parameters; in fact it is the optimal

estimator and identifier when the measurement noise is

zero and the system is initially at rest. The filter

consists of a model of the plant based on the present

estimate of parameters and a model of the parameter

behavior, both of which are updated by linear functions

of the difference between predicted and actual

measurements.
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(4) For either the low sensitivity or the analysis--synthesis

system, the major effect of parameter uncertainty is

equivalent to an additional term in the loss function.

A linear control law, which is optimal in the low sensi-

tivity case and very close to optimal in the analysis-

synthesis case, may be found by solution of a linear

control problem without parameter uncertainty but with

the modified performance index. The primary effect of

identification is to reduce the size of the added cost

terms.

(5) Bealization of the control law in the analysis-synthesis

situation may be simplified by use of a model reference

in synthesis at a cost in performance.

In conclusion, a standard and systematic procedur% based upon optimal

linear system theory, has been developed for the design of low sensitivity

and analysis-synthesis adaptive control systems. The resulting systems

are close to optimum in important situations and their performance can be

analyzed in these situations. In particular, it is possible to calculate

the gain in performance resulting from parameter identification.
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APPENDIX A

SYSTEM EQUATIONS FOR THE LINEAR ADAPTIVE PROBLEM

From (1), (2), (14), and (6 the following state equation may be

generated

where

k+l = f(xk,uk,w k k)

D = n 1 x n

-Dy[ + Ay_

gk

= Du_ + _ u k

Dd_ + 5d k

I matrix - [i1°"i
0

(A-l)

and

A = n 1 x 1 matrix [!]
gk = + a°k+lYk + alk+lYk + b--_+lU k + o lttk + c d_ +

H_ = Aky k + alk+ly k + Bku _ + blk+lU_ (A-2)
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with

T

A k
a T

--nk+ I

T

tl2k+ 1

o

a_k i°]nk+ l

0

2k+l

T

Bk
"I_k+'T
_2k+l

E°lnk+ 1

0

2k+l

c k

Cnk+

=

C2k+

(A-3)

The measurement equation is simply

whe I'e

Yk = hk(xk) + vk = Hrxk = Yk + vk

ff k

"01

1

0

0

.0

(A-4)
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APPENDIX B

DERIVATION OF THE LINEARIZED KALMAN FILTER EQUATIONS

FOR THE LINEAR ADAPTIVE PROBLEM
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APPENDIX B

DERIVATION OF THE LINEARIZED KALMAN FILTER EQUATIONS

FOR THE LINEAR ADAPTIVE PROBLEM

From (A-I)

fx

F D

A

alk+l Ik+l
T

c_k

D

fp r

Lol J

(B-l)

Note that F: is the transition matrix for the dynamic state assuming the

present estimate of system parameters are exact.

If the covariance matrices are partitioned in the same manner as fx

above

Pk/k

k+l/k

P_+ 1/k
(B-2)
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and i f

D
G k

@

= distribution matrix for dynamic state

if qbk is known,

(B-3)

then the extended Kalman filter equations presented in Sec. III-B may be

written down by substitution into (23) and (25).

From (h-2) and (B-l), F O_ has the form given in (31), where

g k

T

_lk+l

0

_k = _lk+l (B-¢)
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MEMORANDUM 7

APPLICATION OF OPTIMUM ESTIMATION AND CONTROL

THEORY TO SATELLITE TRACKING PROBLEMS

I INTRODUCTION

The purpose of this memorandum is to derive optimum (approximately)

estimation and control techniques for the satellite tracking problem.

The problem is nonlinear, as will become apparent in subsequent sections,

Some preliminary studies are described in Refs. 1 and 2.* The present

study has resulted in the development of a digital computer program that

implements the operation of the optimal estimator and controller in con-

.junction with the satellite tracking system.

A solution to the problem can be obtained by solving the estimation

and control portions separately. Since the satellite tracking problem

is nonlinear, tile assumption that the estimation and control portions

separate may not be optimal in the strictest sense; a however, since the

estimation and control portions are weakly coupled (as will be seen in

subsequent sections), the assumption of separation is quite reasonable.

The estimator, which g,-nerates an optimum estimate of the present

state of tile system (satellite and antenna control system), is derived

in Sec. III. The estimation problem is solved by employing the extended

Kalman filter, which necessitates the linearization of the satellite

equations and the measurement equations.

The estimate of the system state is then employed in the controller

to compute the optimum control with respect to the given performance

criterion. The control problem is solved in Sec. IV by making the ap-

propriate linearization and applying some new results in the theory of

linear optimal control.

* Beferences are listed at the end of the memorandum.
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I I PROBLEM FORMULATION

Figure 1 is a block diagram of the satellite tracking system. The

matLlematical models for the various parts of the system are given below.

w x V Wr

MEASUREMENT ESTIMATOR CONTROLLER CONTROL

SATELLITE SYSTEM SYSTEM

FIG. 1 SATELLITE TRACKING SYSTEM

TA- 5578-10

A. SATELLITE*

1 e

_eX1

3
r e

YC2e

/_eX2

3
r e

where

r e

/J'e x 3

- " , (i)
3e 3

r e

(X e+ + X e) 4

The term'4satellitem does not necessarily mean a near-earth satellite; it could, for instance, refer to

a deep-space probe,
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/Z e

X 1 ' X , X 3
_, 2 e e

constunt and the rnas_ of the earth,

the posit_ion coordinates o[' the satellite

with respect to an earth-centered Carte-

sian (:oor(tinate system. ('['h(_ 3 axis is

coin(:ident with tile earth's polar axis,

and the 1 and 2 axes lie in th_ e(luatorial

|)lane, (:olnpleting a right-handed orthogonal

geL, )

It should b(_ noted that tile above differential equations (/) merely give

an approximate description of the motion of the satellite, and ar(_ us_.t

only to obtain the solutions to the estimation und control portions ()f

the problem. The actual* trajectory of the satellite is generated b_ .

mot(. rxu(:t cornputer prograln model deve[oped at NASA Ames Res(:aruh (;,en(rr,

Mountain Vi(_w, California.

The differential equations (1) can be put into state variable torrn

upon definition of the following variables:

:% = X
1 1 '

e

(_2 x2 '
e

(2ombining Eqs. ([) and (2

(_ X
3 3 '

e

0{4 : X1
e

'_S ;c2

_6 _3 ('2)
e

yields

_1 : 064 '

&2 065 '

3 6 '

,¢

The term "actual" refers to the trajectory to be tracked by the antenna in the computer simulation,
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-/Z e I_ 1

lYLt =
3

V
e

-Ve/x 2
:)

5
3

v
e

where

-_e !x 3

6
3

V
e

1/

r e = ( ':_ + :?L2

(3

After defining tile six-dimensional slate vector of the satellite as

6

tile differential equations (3) can be re_ritten concisely as

x = f(x )
e e

where f(x

Eqs. (3).

is a six-dimensional vector function of x e as given bv

Equation (5) is a nonlinear differential equation; however, In

order to take advantage of certain results in the theory of linear

estimation and control, it is necessary to linearize this equation.

This concept will be clarified in Secs. IIl and l\'. Linearization of

Eq. (5) is achieved by considering x to be composed of some nominal

trajectory x ° and a perturbation from the nominal x :
e

X = X ° + X
e e e

6)

Upon expanding Eq. (5) in a Taylor series about x_ and neglecting second

and higher-order terms, the linear perturbation equation is found to be:

_e 5(x°_ )_ , (7)
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.{° = f(x")
e e

= i

o

e

l!(x" )
e

0 0 0 i 0 0-

0 0 0 (I l 0

0 0 0 0 0 1

0 0 0
v 5 v 5 v 5

e e e

o e 2 ) 3_, C%¢t33y.eC_.2,4 1 _.e(,_X,2 -:3t_ - C£3

0 0 0
5 r5 5

r'e e re

V 5 t, 5 F 5
_, e e

0 0 0

(8)

e

5, ill(:(! the problem is to be siinulated on a digit, al computer, it is

essenCili] Lo CO]IV(-_I'C Lht: differentia[ equaLion (7) into S.tll equivcllenL

difference equation. This can De aone by noting that tile time deriva-

t_ive is approximaLely given by

x (k 1) =
e

7 (k) x (k - t)
e e

At

0 1"

wh{ ._. i't2

_ (k) : )_ (k - 1) + x (te - 1)At

"'x" (k:*t) is defined as _x_ (k) and At is t,he Lime increment
e e _ •

(9)
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Substituting Eq. (7) into (O gives

x (k) : {I + 5[x°(k - 1)],'_t}'x" (k 1) (lO)

where the transition matrix ts given by

• x(k - l) = I + 3[x;(k 1)]:_t (11)

Since Eq. (10) is only an approximate mathematical model of tile

sate. lille motion a random forcing term will be included as follows in

order to account for the imprecise nature of this model:

x (k) = do (k - 1)_ (k
e ¢

1) + I" (k - 1)wx(k - l) (12)

where

x

-0

0

0
=

I

0

L°

Om

0

0

0

0

1

U'x(k - 1) =

-w (k - l)-
x 1

w (k-l)
x 2

u, (k - 1)
_ x 3

It is assumed that the random forcing term w(k - 1) is white* gaussian

noise with zero mean and covariance Q,(k - 1) = E[w (k - 1)wf(k - 1)].

13. ANTENNA CONTROL SYSTEM

The antenna control system consists of two channels--elevation and

azimuth. Tile elevation channel, which includes the antenna dynamics, is

illustrated schematically in Fig. 2; the azimuth channel has a similar

configuration. In this study, the analysis is carried through for an

electric drive; a hydraulic drive could be considered in an analogous

manner.

* )zT()The statement that a random quantity z is white implies that E[z(i )] = 0 for i _ 1; i.e., z is

uncorrelated for different sample times.
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Rf If #.__

,.
FIELD

EXCITATION

R m L m

-_vkmr-qmr_--

I:N

fm Jm (_fb Jb fd Jd

Y

MOTOR ANTENNA
TA- 5578 - it

FIG. 2 SCHEMATIC DIAGRAM OF ANTENNA CONTROL SYSTEM (Elevation Channel)

It is assumed that the elevation channel is linear (for suitab]

small signals) and is described by tile following:

where

u@ =

L/ =

Bf =

I =
f

k =
f

V =

L =

B =
_t

I =
m

Lflf + Rflf = uq6 ,

V = k
g fir ,

L I +RI : V - k_
ta g

T = /el ,m ol

+ -_%) : 0 ,

% ,

control variable

field inductance

field resistance

field current

field proportionality constant

generator voltage

motor inductance

motor resistance

moLor current

13)
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n¢

k motor proportionality constant
m

T = motor torque
m

d moment of inertia of motor
m

]" damping of motor

c = gear spring constant of motor(referred to the motor shaft)

N = ge. ar ratio

gl"/>m = motor all e

,1 = moment of inertia of antenna base
6

-['b -- damping of antenna base

c b - spring constant of antenna

= angle of antenna base or angle of antenna's

mechanical axis

d = inoment of inertia of antenna dish
d

fd = damping of antenna dish

@d angle of antenna dish or angle of antenna's
electrical axis

random disturbance (noise) due to wind gusts.

It should be noted that this model of tile antenna considers the first

bending mode. ["or large antennas tbis effect is quite significant.

[t has been shown 4 that tile power spectral density of the wind dis-

turbance he: is approximately equal to

1

_n4 ( s ) =
- s 2 + Ot _j

The noise n4 can be consictereo as the output of a filter }laving the

transfer function

1

S + ac_

and subjected to white noise w5 , where ))w4>(s) = 1. This step is neces-

sary in or_ler to put the problem in the appropriate form for tbe relevant

theory. In the time domain, n b an0 w._ are related by

n_ = -aeon ¢ + _,4 (It)
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The differential equations (13) and (14) can be put, into state

variable form by Oefining tile following variables:

0{7 = If

0{ I
8 m

0{ 9 = _Sm

0{13 = @d

al 4 = _d

0{15 = n_ (15)

Upon denoting the nine-dimensional state vector of the elevation channel

as

7

r_ . , (16)

0{
15_

the differential equations (13) and (14) can be rewritten concisely as
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wh e. Fe

- fir

L/

te
/

L

()

L
m

0 0 0 0 o 0

_m

-_ 0 0 0 0 0
0 L

m

0 0 0 I 0 0 () 0 0

/% % 1,_ c N
0 ..... 0 () 0 0

.l d ,I J
m m m

0 I_ (} 0 0 1 ()

c fV ._'2c + Q, ['_ c_
0 0 -_ 0 -

db .lb ,I_ d

0 0 0 0 0 0 0

C b e 6

0 0 0 0 - .l--7 0

0 0 0 0 0 0 0

0

0

1

f_

Jcl

0

m

(I

0

0

0

1

Jd

-a.,

-LTI -

0

I)

0

0

0

.1

The digital ,.rnputer simulat, ion of the problem necessitatps the conver-

sion ol the differential e.tuati,_n (17) int. o an equi,,alent ilifterence

equati.n. This can be accolnplished by solving Eq. (1-) _itt_ :,ii arbi-

trary init ial conditiun r,(t'

t

r-_.(t) = exp [K:,(t t )r.(t') + I exp {/:/.(t _ [)m,I.'h/,.
t

+ It exp [F_(t
t

)]d_%(:),tr l l lll
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_,"ith t k'\t and t' (k - l)_:Zt, and with u4_ and we, assumed to be con-

slant, over the time interval [(k - 1)L\t, k:'kt], Eq. (18) becomes

whe l'e

%(k) = O¢)(k - 1)r¢(k - 1) + A_(k - l)u_(k - 1) + _(k - 1)w_(k - 1)

_, F_ (At)'
@+(k 1) _, _ exp If cAt] = Z

_=0 i!

t

(19)

i -k_t,_\_(k 1) = exp [F_(kAt - r)ldrD+
'_' _ik-1 )±t

o (i + 1)! D+

-P_(k 1) = V¢, : _k_t exp [F4(k'-_t - 7)]dTG 5
_(k-1)zkt

® F_ (At) _+1]
i=0 (i + 1)!

(20)

and r.¢.(k:_t) is defined as r_(k).,+

The azimuth channel has the same form as the elevation channel, which

is described by the differential equation (17). The oniy difference be-

tween the two channels is that the moments of inertia of the antenna (in

azimuth) are functions ot the elevation angles. Since the rates of

change for t.hese moments of inertia are slow with respect to the control

system time constants, it will be assumed that they can be treated as

time-varying functions, ttence, the azimuth channel can be described by

a dilferential equation that is analogous to Eq. (17 :

;o = Fg(t)ro + Douo + Gowo (21)

whe I'e

r, (22)

7"11



is the nine-dimensional state vector of tile azimuth channel and is

entirely analogous Lo t_ as defined by Eqs. (15) ana (16). Tile marl'ices

F:;(t), D_, and G¢4 have lhe identical form of the corresponding matrices

deiincd ill Eq. (17 , the time dependence ill Fg(t) being due to the time-

varying moments of inertia.

The difterent, a[ equaLion (°1) Call be conver'ted into all equivalent

dilference equation by assuming that Y_, ill aOdiLion to u9 and w_, is

constant over the inLerval E(k - 1)At, k_t]:

Whel'e

r#(k) = _,_(k 1)r_(k - 1) + _:Z_(k - 1)u6(k - 1) + [':(k - l)w_(k - 1)

• #(k - 1

(/o

= E
/=0

F_(k - 1) (At)L

':\o ( k 1 = [_= F_(k 1) (Gt} _+1 ] Da
i 0 (i + 1)! '"

and rs(kAt

F#(k - 1 _ F2tk - 1)
i =0

is defined as ra(k).

(i + 1)

tlence tile antenna control system (elevation and azimuth channels)

is described by

(24)

wheFe

r(k) qb (k- 1)r(k - 1) + Ar(k - 1)u(k - 1) + F.(k - 1)w (k - 1)

r(k - 1)

• (k - l)
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u(k

..... (k l
r 0 ]

...._(k 1 )

w (k
r-

['r(k - t _[+1+,o j
0 I _(k 1

In addition, it is assumed that wr(k - ]) is white gaussian noise

with zero mean and covariance Q_(k - 1) E[u, (k - t)u,y(k - 1)]. The

ttJutt'ic(:s _ '\, and I' can be computed with art arbit_rarv degree of
r r _ r

accurac:y by taking a suitably large (but tiniLe) nun/ber of terms in the

series +!xt, ansiotls of Eqs. (20) and (2,1,).

C. Mt+IAbI!I/EMENT SYSTEM

The stale of the satellite tracking system, which consists of the

satelliLe (x ) and Lhe antenna cont. rol system (r) may be defined by
e

Lhe 2._-dimensionul vecLor

[i1= =

24

(26)

The rneusuremelit system, which inclucles the monopulse receiver*, is

defined by t. he 15-dimensional measurement, vector'

The monopulse receiver and its associated demodulating equipment measures the elevation and azimuth

components ot the difference between the angle of the antenna's electrical axis and the satellite angle,

It is assumed that tbis difference is suitably small so that the operation of the monopulse receiver
is linear,
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c_7(k)

Y(k

W h e F {_.

_:2(k

(k
16

:_2 : (k

_>_(k) - ,% [a(k

_d(k) - i) [a(k

• 7

/-;s [_(k ),k3

,k!

,kl

+ v(k) h[ia k),k] + v(k) (27)

'__sl,:_(k ) , k ]

; k)
'_ d

_,(k)

elevat on angle of satell te

azimuth angle of satellite

range rate of satellite

:_::3(k) , _?a(k) = 0.22(k

measurement noise, which is assumed

to be a white gaussian random pro-

cess wi L}I zeFo recall a[ltl covariance

l_(k) E[v(k)vT(k)].

The expressions g) , Os, and /',._ (which are time-varying, nonlinear func-

tions) are derived in Appendix A and given by Eqs. (A-6), (A-7), and

(A-9), respectively. Figures A-I, A-2, and A-3 in Appendix A illus-

trate the geometry of the satellite tracking problem, it should be

pointed out that this study considers the relative motion of the antenna

with respect to the satellite as the earth rotates on its axis.

Since the measurement equation (27) is nonlinear, it is necessary,

as before, to perform a linearization. Consider c_ to be composed of

some nominal trajectory _o and a perturbation from the nominal _:

: a° + E (28)
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.%imilar'ly, let /3 be given as follows:

t_ = t_° + i J (29)

t']xl)aildilig Eq. (27) in a Taylor series abnut, C{° alld neglecting second and

higher-order terms, the linear perturbation equation is

_(k) = Hia°(k),k]_'(k + t.,(k) , (30)

where

/7o (k) h[_° (k),k]

ff[c_ ° (k),k]

° (_,),k
(k),k

l"roln Eqs. (26) and (27), it (:all be demonstrated that

t#[c_O(k),k] A=H(k) =

I t

© , , ©I I

(6 x 6) I (6 x 6) I (6 x 12)
I .I.

©
(6 × 15)
m

i

a 1 a 2 a 3 0 0 0 i 0 .

b i b 2 b 3 0 0 0 I 0
I

CI C2 C3 dl d2 d3 i 0
I

0100

0

Ii©
(6 x 6)1(6× 3)

0 0

O... 0100

0

ct° (k), k

wt_ere tile a<, b i, ci, and di are derived in Appendix i3 and given by

Eqs. (B-5) tiirough (B-8).

(31)

D. ESTIMATOR AND CONTROLLER

"File function of the estimator is to generate an optimum estimate

of tile present slate 0_ from the measurement /3 which is corrupted by

noise. This estimate is then employed in ttie controller to compute the

optimum control with respect to the given performance criterion. The

estimation and control equations are obtained in Secs. 1II and IV,

respect i ve [ y.
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lIl ESTIMATION EQUATIONS

In this section the estimation problem is solved by employing the

extended Kalman filter. This concept is an application to nonlinear

systems o[" work done by KaIman in linear estimation theory. 5 The deri-

vation of the extended (or linearized) Kalman filter is presented in

Xlemorandum 66 and hence will not be repeated here. This approach has

been successfully applied at Sill _o missile tracking problems, including

the identification of unknown aerodynamic parameters. 7

l"rom Eqs. (12) and (25), the random disturbance acting upon the

satellite tracking system is given by the five-dimensional vector

w(k)

wr(k)

which is white gaussian noise with

EI_(k)] = o

E[_(k)_r(k)] : O(k o]
Or(k)

The measurement noise v(k) has been defined in Eq. (27). The initial

slate ;x(O) is a gaussian random variable with

E[a(O)] = a(O/O)

E[{:::_(o) _(o/o)}{c<(o) - ,_(o/o)} r] P(O/O)

Furthermore, it is assumed that w(k), v(k), and c_(0) are uncorre[ated.
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The resulting estimation equations can be considered as consisting

of two parts: prediction and correction (or regression).*

A. PREDICTION

Given the estimate of the system state at the k-lth instant

[_(k - 1/k 1)], the predicted system state for the kth instant

[a(k/k - 1)] is obtained from Eqs. (9) and (25):

_ (k/k - l)

A e

_(k/k -1)

_(k/k :)

A i= x (k - 1/k - 1) + f[xA (k - l/k - 1))At ¢

(32)

= Cr(k - 1))(k - i/k - i) + Ar(k - 1)u(k - 1)

with the covariance of the error in this prediction given by

P(k/k - I )

where

= ¢(k- 1)P(k - 1/k - 1)¢r(k - 1) + F(k- 1)Q(k - 1)Vr(k- 1)

PCk - 1)

(33)

¢(k - 1) = I Cx(k 1) 0 ]

k Jo ¢r(k- 1)

and ¢ (k 1) is obtained from Eqs. (7), (8), and (11) by linearization

about the estimate _(k - 1/k - 1) [or _ (k - 1/k - 1)]; i.e.,

¢ (k - 1) = I * 3[xA (k - 1/k - 1)]At

It should be noted that w(k - 1) = 0 in Eq. (32), since E[w(k - 1)] = 0.

* The following notation will be employed:

_i/,_ -_ e[_/e_,) ..... _l_, oo- l) ...... _0_]
A

These expectations are conditioned on the previous measurements and inputs.

The nonlinear differential equation for x e :nay be integrated by a more accurate method if necessary.
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B. CORRECTION

A

The prediction _(k/k - l) is then "corrected" by using the actual

measurement at the kth instant [_(k)] and the predicted measurement for
A

the kth instant [fl(k/k - 1)], which is obtained from Eq. (27):

A A

/3(k/k - l) h[_(k/k 1), k] (34)

It should be noted that v(k) = 0 in Eq. (34), since Ely(k)] = O.

Hence, the estimate of the system state at the kth instant is given

by

_(k/k) = ct(k/k 1) + _l(k)ii_(k/ - /3(k/k - 1)j (35)

where the weighting matrix

W(k) = P(k/k 1)Hr(k)[R(k) + ft(k)P(k/k - 1)Hr(k)] -I , (36)

and H(k) is obtained from Eqs. (30) and (31) by linearization about the
A

prediction _(k/k - l): i.e.,

^ ?h
H(k) = It[_(k/k - 1), k] = --

A

ct(k/k-I ),_

A

The covariance of the error in the estimate a(k/k) is

P(k/k) = [I - W(k)ff(k)]P(k/k - 1)

= P(k/k - 1) -P(k/k - 1)ttr(k) [B(k) +H(k)P(k/k - 1) Hr(k)] - _tt(k)P(k/k - 1)

(37)

The extended Ka[man filter [Eqs. (32) through (37)], which is

depicted in Fig. 3, gives the solution to the estimation problem.

Obviously, this solution can be readily implemented on a digital computer.

However, since the overall system is not linear, the solution is

* From Eqs. (B-S) through (B-S), together with Eq. (31),

it is obvious that H(k) ta actually evaluated at the predtctlon _e(k/k - 1).
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u(k) lV_

TA-5578- i2

FIG. 3 BLOCK DIAGRAM OF THE ESTIMATOR

suboptimal. Intuitively, this approach seems to be quite reasonable,

but its validity has not been rigorously established. The extent to

which this solution to the estimation problem differs from the optimum

is mainly dependent upon the accuracy of the linearization of Eq. (5),

tile di t'ferential equation for x , and of Eq. (27), the measurement

equation. There are many questions pertaining to this subject that

remain to be answered.

It should be noted that in the derivation of the extended Kalman

filter, the nonlinear equations (5 and (27) were used in Eqs. (32) and

(34) to obtain the predicted state and the predicted measurement. The

linearization of Eqs. (5) and (27) in order to obtain _ and tt, is only

employed to calculate the covariance matrices P and the weighting

matrix W.
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IV CONTROL EQUATIONS

In this section the control problem is solved by application of

linear optimal control theory. Consider the performance criterion

(38)

This performance cr terion corresponds to tracking for the purpose of

gathering satellite position data. The cost associated with control

(where T _ 0) is essential in order to guarantee that u# and u 0 do not

become too large, which, in turn, could cause certain state variables of

the antenna control system to exceed their permissibles range of values

(e.g., the motor speed and torque are bounded because of physical con-

siderations). However, the actual performance of the satellite tracking

system is determined by tile first two terms in Eq. (38).

To use the results of linear optimal control theory, it is necessary

for the performance criterion 3 to be quadratic in the system state a.

However, this condition is not satisfied, since ¢_ and O, are nonlinear

functions of : (or x ), as shown by Eqs. (A-6) and (A-7). The criterion

J can be put into the appropriate form by linearization of @,(k) about
A

the estimate a(k/k) [or _ (k/k)]. After writing Eqs. (A-6) and (A-7) as
e

k

Taylor series expansions about x (k/k) and neglecting second and higher-

order terms,

A

k

0 (k/k) + b__r(k)7(k) , (39)

where

x ,(k
A

(k/k) + _ (k) (40)= X e
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; ( k / k
s

k]

a(k)

--a l --bj-

-a 2 -b 2

-a s -b 3
0 , 6_(k) = 0

0 j 0
0 '. 0

A
x ( k / k

e
x (k,k),k

e

in which tile a and b i are given by Eqs. (B-5 and (B-6).

The state of the antenna control system can be defined by the

26-dimensional vector

s

A

_ = _ , ( 41

X e

A A

which contains c_ (with x e linearized) and is augmented by @= and U s.

The dynamics of x and r are given by Eqs. (12) and (25), respectively

there are no dynamics associated with q5 and (J Therefores

c_(k * 1) = _(k)a(k) + A(k)u(k) + ['(k)w(k) , (42)

* It should be noted that because of the nonlinearity of Eqa. (A-6) and (A-7), g5 s and 8 s are not
optimal estimates in the usual sense.
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where

O(k)
(lll (k) 0

0 _r(k)

Ol(k)

0 O(k) J

LX(k)

V(k)

[o]
At(k)

(D

[_ 0
x

0 V (k)

Substituting Eq. (39) into Eq. (38) and rewriting d according to

the standard formulation gives

where

J [M ]E Z= {a__r(k)A(k)a(k) + ur(k)B(k)u(k)}
k 0

(43)

B(k) = B

A(k) = [ Al(k) A3(k) 1

A2 J
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in which Al(k is 8 × 8; A.e is 18 x 18; A3(k) is 8 × 18; and A(k) is

symmetric and positive semidefinite. After comparing Eq. (38) with

Eq. (43) it ts a straightforward matter to determine A(k):

l(k =

I

-a(k) -b(k)

[ -at(k)

I
I -b r(k )

I
I _a(k )R r(k) ÷ b(k)br(k

A3(k)

0 I -1

I
I
I 0

I
(8× 4) I -a(k)

I I 0

I I -i
I I
I I
I (8 x 8) I -b(k)

A 2

-0

0
1

0

©

©
0

1
0

0

(the 5th and 14th elements on the diagonal of A 2 are equal to one).

The design objective is to find the sequence of controls

[u(0), u(1), . . . , u(g)]

that minimize J. Tile control equations will be derived by applying

some results obtained by Larson; 8 this work is an extension of results
3

in linear optimal control theory.
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The optimal control u(k) is given by

A

u(k) = -K(k)_(k/k) (44)

where the gain matrix K(k) is denoted by

K(k) = [B + A_r(k)Pc(k + 1)A(k)]-_A_r(k)Pc(k + 1)_(k)

and Pc satisfies the discrete Hiccati equation

(45)

Pc(k) = A(k) + __r(k)Pc(k + 1)_(k)

-¢_r(k)P(k + 1)A(k)[B +A_r(k)Pc(k + 1)A_(k)]-lA__f(k)P(k + 1)__(k) ,

0 <_ k < M (46)

P (M) = A(M)
C

For convenience P (k) will be rewritten in a form entirely
C

Pc (k) =

analogous to A(k):

Pl (k) P3 (k))] ,
Pf(k) P2 (k

where Pc(k) is symmetric and positive semidefinite.

Upon performance of the indicated matrix multiplications, the

optimal control in Eq. (44) becomes

u(k) = -[B + Arr(k)P2(k + l)Ar(k)]-IArr(k)p_(k + i)_1(k)_(k/k )

where

-[B + Arr(k)P2(k + I)A (k)]-IAr(k)P2(k + l)q_ (k)Ar(k/k)

_(k/k)

-A

Cks(k/k )"

A

= O s (k/k)

A

7 (k/k)

(47)

(48)
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"]'h_" Hiccati equation (!-6) can bc partitioned into separ.t_, _,quat ions I,_l

P j, P,,, and P3:

Pl(k)

PI (3I)

f' 2 ( k )

7" )T )/", !B ?]' l)A (k)]-i&T(k)l':_Ik + I q_ (k)ql)l(k)i3(k + I (k) + (k)P2(k + I

(1 k < 3!

A 1 (M);

,,t2 + _T(k)P2(k + ])_ (k)

-(l)T(k)P2(k, + l)_ (k)[B + _'_T(k)P2(k + l)?', (k)J l:'f(k)t'.,(k, . +

0 k

A "2

A3(k) + _Tl(k)P:_(k + 1)_(k)

rpT(k)P3(k + I)^'_r(k)[B + \_'(k)P2(k + 1)/\ (k)l JA,f(k)l',(k + I)q'r • •

P:_ (M) A 3 (:'/)"

k)

O. k" M

(lq)

(5O)

(51)

Equation (50) can be s.lved for P2 independently of Eqs. (49) and

(51). llence, the dimension of Lhe Riccal. i equation t,o be solved has

been reduced from 2(5 x 26 to 18 x 18. It should be noted that Eq. (50)

is the Bicatt i equal ion for the antenna control system ot' Eq. (25) with

the performance cr'i tf'rion

'_ r ( ]
E .'>_ {r k)A,,r(k) + ur(k)Bu(k)}

Once 15, h.s b<'en t'_,und, it is subsLiLut_'d into Eq. (5l), which is a

linear _,quati._n i. P:I (of dimmension 8 × 18) and ver'x easy t,, solve.

Since' PI does not _.tcr' into Lhe (:onLr_l equat, ion (47) or the' calculat,

of P,, a.d P it. is n_,l n_cessa.'y to solve Eq. (49)3 '

Thus, the' voll_putational v...luirement, s have been veduc_'_l ltl. vkedly.

Insteud _,1 solving Eq. (.t-6) for P it. will suffice to sol_,. E, 1. (50)
c

for P and (:alculal_' P tr_srn Eq. (51) The optimal c.l,t v,.I i_ is then

obtained by substituling P, and t)_ inLo Eq. (47). Equati(,_.s (47), (50

and (51). loget_her with ot. give the so[uLion to the ,,_.ll-I problelrl.

f) rl

7 "25



A. STEADY-STATE APPROXIMATION

Suppose that the antenna control system of Eq. (25) is stationary

(i.e., the matrices _r' flr, and Fr are constant), which is equivalent

to assuming that F8 of Eq. (21) is constant. This assumption is fairly

reasonable over a substantial time interval, since the rate of change

of F 8 is slow with respect to the control system time constants.

Additionally, it will be assumed that the summation in the performance

criterion J of Eq. (43) is over an infinite time interval (i.e., M = co).

This assumption is quite reasonable, since the interval of time during

which the antenna is tracking the satellite will be appreciably larger

than the control system time constants. With these two assumptions,

computation of the optimal control u(k) is greatly simplified, as will

be shown below. Formulation of the control problem in this manner will

be referred to as the "steady-state approximation."

The Riccati equation (50) becomes

P2 = A2 + ¢_rrP2_r - _?P2ZSr [B + ArrP2ZXr ]-IArpr 2 _r (52)

The above is a nonlinear algebraic equation in the steady-state matrix

P2" In general, Eq. (52) is very difficult to solve. The most straight-

forward way to obtain P2 is by the iterative solution of Eq. (50). That

is, let P2(k + 1) be some positive definite matrix and then solve

Eq. (50) iteratively until it converges to a steady-state solution.

Instead of solving Eq. (51) for _ , consider the following

quantity from the first term of Eq. (47):

P_(k + 1)¢l(k)_(k/k) (53)

It will be shown that this approach simplifies the computation of the

optimal control u(k). From Eq. (40) it can be seen that

A

_(k/k) = 0
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hence, Eq. (48) yields

_(k/k)

.^

¢_(k/k)

h

O (k/k)

0 (54)

From Eqs. (42) and (54), it follows that

_(k)_(k/k) = _(k/k_ (55)

In effect, the linearization in Eqs. (39) and (40) enables the left-hand

side of Eq. (55) to be rewritten as

_Pl(k)ax(k/k) = _(k + 1/k ÷ 1) (56)

Transposing Eq. (51) and multiplying by _(k/k) yields

P_(k)_(k/k)

For convenience, define

T T= Ar3(k)Ax(k/k) ÷ _p P3(k . 1)c_l(k)Ax(k/k)

__TP2_r[ B _P2_r]-I T r _(k/k). ArP3(k + 1)_ 1 k/

(57)

A
_ A

_7(k) : P_(k)_(k/k) (58)

Hence, substitution of Eqs. (56) and (58) into Eq. (57) g yes

r^ Crv(k ÷ 1)•r?(k) = A3x(k/k) +

[B + A;P A + (59)
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From Eqs. (43) and (5%), it can be shown that

TA3(k ) Ax(k/k )

0

-_ ( k/k )

0

0
A

-{_s ( k/k )

0

(60)

A A

(-@, and -(_s are the 5th and 14th elements, respectively).

From Eqs. (55) and (56), it can be seen that tile 1B-dimensional

vector in Eq. (60) is effectively constant. Therefore, tile steady-state

solution to Eq. (59) is given by

where

_? = [I - _J]-]Ar{k)Ax(k/k) (61)
3 --

_rr - _brrp2A. r[B + ArrP 2&r]-lArr (62)

If the state r(k) were known exactly, _r would correspond to the closed-

loop transition matrix of the antenna control system. For a control law

that is asymptotically stable, Ik,(_)l< l, where the Ai(_) are the

eigenvalues of _. With this condition satisfied it can be demonstrated

that the inverse of [I _] exists.

From Eqs. (56) and (58), it can be seen that the expression in

Eq. (53) is equivalent to _; therefore, tile optimal control is
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.(k) -[B + ArP2A ]-1ART /

-[B + A[_A ]-tA/P2¢ rA(k/k) (63)

As the succeeding estimates of thesatellite state (xA ) are computed,
e

A _,

gS., and 8 will actually change. Thus, Eqs. (60) and (61) show that it

is necessary to update _7 at each discrete time and then substitute it
k

into the first term of Eq. (63). Since qb s and O (the estimates of the

elevation and azimuth angles of the satellite) change slowly with respect

to the control system time constants, use of the steady-state solution

to compute the optimal control is quite reasonable. In addition, as

successive estimates of the antenna control system state (At are calcu-

lated, they are substituted into the second term of Eq. (63 Equations
A

(52), (61), and (63), together with ct, give the solution to the control

problem under the steady-state approximation.

As a further refinement to this approximation, the time-varying

nature of F0 can be taken into account as follows: Update F 8 period-

ically and recalculate @ , A , and I_r of Eq. (25). With these new

matrices, P2 [the solution to Eq. (52)] and )7 [the solution to Eq. (61)]

are recomputed. Finally, u is obtained from Eq. (63) by substituting

these updated matrices. Thus, a nonstationary problem is solved as a

series of different, stationary problems. It is not necessary to repeat

this procedure at every discrete instant kAt, since the rate of change

of F_ is slow with respect to the control system time constants.

The solutions to the control problem can be readily implemented on

a digital computer. Although these solutions are suboptimal, the

approach used seems quite reasonable. The validity of these results

remains to be investigated.
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V CONCLUSION

The digital computer progranl for implementation of the operation of

tile (approximately) optimal estimator and controller in conjunction with

the satellite tracking system has beer, written and is now functioning

properly. The program has been organized so that it will be sufficiently

general and flexible enough for the proposed applications.

This program is a valuable study tool tot" the investigation of

several important topics. Primarily, it will provide a way of evaluat-

ing existing tracking techniques; i.e., it will be a yardstick tot

comparing system performance.

An important question relates to the l inearizalions employced it,

Secs. lll and IV in ot'der to obtain solutions to the estimation and

control problems. Since the satellite tracking probl_m is nonlinear,

the solutions obtained in this manner are suboptimal. Although this

approach is intuitively reasonable, its valiclity has not been rigorously

established. The extent to which these solutions differ from the optimum

wilt be studied by computer simulations iu con.junction with analytical

inves ti gat i ons.
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APPENDIX A

DETERMINATION OF _, _ _, /'J

The equations of motion of the satellite, as given by Eqs. (1) or

(3), are expressed in terms of an earth-centered Cartesian coordinate

system. However, the actual operation of the antenna control system is

in terms of radar coordinates--elevation, azimuth, and range. In fact,

the measurement system [Eq. (27)] observes the elevation and azimuth com-

ponents of the difference between the angle of the antenna's electrical

axis and the satellite angle, in addition to the range rate of the

satellite.

3 e

I@

TA- 55 75- t3

FIG. A-1 GEOMETRY OF THE SATELLITE TRACKING PROBLEM

The geometry of the satellite tracking problem is illustrated in

Fig. A-1. The l e and 2 axes, which lie in the equatorial plane of the
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i, arth. and the" 3 axis, which is co;ncident with the earth's polar' axis,

comprise' an earth-centeied Cartesian coordinate system. The position of

the antenna is given by the three-dir.er_sional vecLoI'

[;L]Y = 2

)' 3

lit t.t,e ] '_ 3 coordinate system

whe l'¢'

'YI
e

Y 2

Y3
e

B cos _/_ cos (_Tt + b)

B cos p' sill ([_t + 5)

/_ s i n ',:, ,

(A-l)

O

radius of the earth,

angular rate of rotation of the eartii,

all arbi tl'al'y angle.

The position of' the satellite is given by the three-dimensional vector'

t';qs. (I).

by

X =

In the I ') 3 coordinate system, x' consists of ttie x defined in
"-e _ e , e t e

Now, tile vector from the antenna to the satellite is denoted

' : (A o)Z X - ,y Z 2

z 3

Before proceeding any further, it is necessary to define eert. ain

termii, ology that will be used:

* This study considers the relalive motion of the antenna with respect to the satellite as the earth

rotates on its axis.
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Azimuth plane - plane tangent to tile earth at the antenna

site; this plane is perpendicular to y

Zero-azimuth

line

- perpendicular projection onto the azimuth

plane of a great circle passing through

tile North Pole and tile antenna site

Azimuth line - perpendicular projection of z onto the

azimuth plane

Elevation

angle _

the angle between the azimuth line and z

Azimuth

angle
$

tile angle between tile zero-azimuth line

and tile azimuth line.

In the 1 , 2 , 3 coordinate system, Eq. (A-2) yields

!

z : x - y_ (A-3)

The expressions for the satellite angles _s and &' _ can be obtained from

Eq. (A-3) by expressing z in terms of the 1 2 3 coordinate systemr _ r j r

depicted in Fig. A-2. The 1 r, 2r, 3rand the le, 2 , 3e coordinate systems

are related by the following two rotations (or orthogonal transformations):

3 e

t r

3r

le

2e

TA-5578-14

FIG. A-2 RELATION OF THE le, 2, 3 e AND

lr, 2r, 3 r COORDINATE SYSTEMS

VIA THE TRANSFORMATION Rr/e
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{1) i'_lialion ablaut lh_ ;_> axis t)y the! angle _'t + 0; ('))i rotatiOli about
e

ill(' di,_l>l_l<,,d <_ axis t>_,' tile aligle -tT';'. It (all t)(_ set:II that tile ] axis
e , r

is per'tJendieular t,o t, he aziiliu[h plane willie the 9 and 3 axes lie in
_r r

the, a/,illJlllii ])]all(: alia t,}i(! ;_ axis is (oincident, wit, il the zero-azilnUt]l
r

line. 'I'll{' le_ulting i)l'[hl)_lillai ti'allsi(il'iiiaLioll Call t)e reliresentecl ]J's

• e

0 1 0 -sin (_2t + 8) ((is (tit + c,)

sin ?, 0 cos VJ 0 (I

c<>s '_, cos (_t + b
-sin (}i,t + d,)

i li t7',' cos (_,/t -i- 0

cos c/, sill ([2t + b) sill _- G

Jcos (X:!t + b) ()

-sin t?' sin (_Lt + _) cos _'

(A- 4

Thus in the 1 '_ :{ coordinate s'j, s tem,
r

Zr = t{_/_Ze (A-5

lnsp(!ction of Fig. A-3 ellabl_es one to readily deLerlnine @s and £)' , which

ai'e given by

p l]
= si,,-' Ll ,l_l'

]
,_'_ CoS- I r (A-7

+ z2 3 )
r r

W}I (! Fe

= I.-i

l"inall'_ ...., is and i') s call be expressed in gel'nls of the x L arid yi b_', sub-
e e

st, ituting frorn Eqs. (A-5) and (A-S). _[he x l are contained in the slate
e

vector c* of Eq. (26) [see Eqs. (2)], and the -Yi are known time-varying
e

* It should be no,ted that the magnitude of a vector is independent of the coordinate system,
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0

2r

I F

"'--] .)os II
"_ I /

"AZIMUTH LINE

ZERO-AZIMUTH

_/jLI NE
- 3 r

//" Z3r
/

TA - .5578-15

FIG. A-3 DETERMINATION OF 6s AND 0 s

functions [see Eqs. (A-1 ]. Hence, tile satellite elevation and azimuth

angles are time-varying, nonlinear functions--% [(z(k),k] and O [(z(k),k].

The range Ps' the distance from the antenna to tile satellite, is

given by

p, = Izel (A-8/

From Eqs. (A-8) and (A-3),

3

• L=I t e e e e

,o._ = (A-9)

[ 1(,
i=1 ie i

The x. and _I are contained in a of Eq. (26) [see Eqs. (2)], and the

y, and yt are known time-varying functions [the y, are readily obtained

from Eqs. A-l)]. Ihus, the satellite range rate is a time-varying, non-

linear function_p [a(k),k].
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APPENDIX B

CALCULATION OF THE a , bL, c,, d

The matrices H(k) of Eq. (31) and a(k) and _b(k) of Eqs. (39) con-

tain the partial derivatives of qb , _, and /_ with respect to the elements

of a [or xe--see Eqs. 2) and (4)]; i.e.,

= = _ (B-l)
-at _Xte O_ t

_8_ 385
-b - - (B-2)

e

c, 3x_ 3a., (B-3)
e

d (B-4)

¢

for i = 1, 2, 3.

Applying the chain rule for differentiation to Eqs. (A-5), (A-6),

and (A-7), one can express the terms in Eqs. (B-l) and (B-2) in the

compact form:

-a 1

-a 2

-a 3

"_@s/_ Z 1 r]

J= B r /-d
r/, _cp_ z2r

C)@ s /' "C) Z 3 r

(B-5)
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1
r

2 + Z
'2

r r

r

-,P!. ,,;/
s

"_2
r

-Z l Z 2
r r

(2Z ,_ + Z 3 r

r •

,:)Z
3

r

-z 1 z3
r r

I;

+ Z 3 2 r

r r

and

-_ hi-

- b 2

- b 3

s

,) z
1

r

s r

_Z 2 Z 2 + Z 2
r 2 3

r r

:>? z 2
s r

=
%

,-3z :; _ 2 + z 2

r *2 3
r r

t_ r
r / e ':)!_ IZ

s

ii, ''_ ,:)Z

m

r12
r

3
r

( B- _ )

The above results make use of the fact. that

))z _ : {1 , for i = d-Ox 0 , for i _ j
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and that the element in the i th FOW and j. th column of B rr/e corresponds

to _z //_z Finally, the _@s/_z and _)_ /B, carl be expressed in
J te Jr s ..... ]r r

terms of the xie and YLe by substitution from Eqs. (A-S) and (A-3).

From Eq. (A-11), it is a straightforward matter to show that the

terms in Eqs. (B-3 and (B-4) are given by

2

c = (B-7)

[3( ,J)]j_l= Xj e - e 2 3/2

Xie - yie

d i = (B-8)
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